• Title/Summary/Keyword: Carbon pretreatment

Search Result 270, Processing Time 0.027 seconds

The Effect of Rapid Freeze Pretreatment on Grinding of Organic Ion Exchange Resins (금속동결 전처리에 의한 유기이온 교환수지의 분쇄효과)

  • Yim, Sung-Pal;Kim, Joun-Hyeong;Son, Jong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.23-29
    • /
    • 1990
  • The effect of a rapid freeze pretreatment of organic ion exchange resins on their grinding properties was studied. It was found that the structure of ion exchange resins was defected by freezing pressure formed in the process of rapid freezing. The defected resins didn't recover their own structure after thawing and those could be easy to be broken at room temperature by small force. Therefore, organic ion exchange resins could be ground readily at room temperature after rapid-freezing the fully swelled resins using by solid carbon dioxide, or liquid nitrogen. The rapid freeze pretreatment of cation exchange resins was very effective on grinding in particular. However, the effect of the pretreatment of anion exchange resins on grinding was less than that of cation exchange resins. In case of anion exchange resins, the ionic form of affected the grindability remarkably.

  • PDF

Diamond Crystal Growth Behavior by Hot Filament Chemical Vapor Deposition According to Pretreatment Conditions

  • Song, Chang Weon;You, Mi Young;Lee, Damin;Mun, Hyoung Seok;Kim, Seohan;Song, Pung Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.241-248
    • /
    • 2020
  • The change of the deposition behavior of diamond through a pretreatment process of the base metal prior to diamond deposition using HFCVD was investigated. To improve the specific surface area of the base material, sanding was performed using sandblasting first, and chemical etching treatment was performed to further improve the uniform specific surface area. Chemical etching was performed by immersing the base material in HCl solutions with various etching time. Thereafter, seeding was performed by immersing the sanded and etched base material in a diamond seeding solution. Diamond deposition according to all pretreatment conditions was performed under the same conditions. Methane was used as the carbon source and hydrogen was used as the reaction gas. The most optimal conditions were found by analyzing the improvement of the specific surface area and uniformity, and the optimal diamond seeding solution concentration and immersion time were also obtained for the diamond particle seeding method. As a result, the sandblasted base material was immersed in 20% HCl for 60 minutes at 100 ℃ and chemically etched, and then immersed in a diamond seeding solution of 5 g/L and seeded using ultrasonic waves for 30 minutes. It was possible to obtain optimized economical diamond film growth rates.

Protective Effects of 2-(Allylthio)pyrazine on Retinoyl Palmitate- and Pyridine-Potentiated Carbon tetrachloride- induced Hepatotoxicity: Effect on ${\Phi}x$-174 DNA Strand Breakage (비타민 A 및 피리딘으로 유발된 사염화탄소 유발성 간독성에 대한 2-(알릴티오)피라진의 보호효과: ${\Phi}$x-174 DNA 손상에 미치는 효과)

  • Kim, Sang-Geon;Cho, Joo-Youn;Choi, Sung-Hee;Kim, Nak-Doo
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.727-733
    • /
    • 1996
  • 2-(Allylthio)pyrazine is effective in selectively suppressing constitutive and inducible expression of cytochrome P450 2E1. The effect of 2-(allylthio)pyrazine against potentiat ed chemical injury was studied in rats. Vitamin-A pretreatment of rats substantially increased carbon tetrachloride hepatotoxicity, as supported by an ~4-fold increase in serum alanine aminotransferase (ALT) activity. Concomitant pretreatment of rats with 2-(allylthio)pyrazine at the daily dose of 200mg/kg resulted in a 76% decrease in vitamin-A-potentiated hepatotoxicity, which supported the possibility that 2-(allylthio)pyrazine protects the liver against chemical-induced hepatic injury by the mechanism associated with Kupffer cell inactivation. Pyridine pretreatment caused substantial enhancement in carbon tetrachloride hepatotoxicity. 2-(Allylthio)pyrazine treatment of rats reduced the pyridine-potentiated toxicity in a dose-dependent manner. Animals treated with both pyridine and 2-(allylthio)pyrazine prior to intoxicating dose of CCl$_4$ resulted in 85% and 47% decreases in pyridine-increased triglycerides and cholesterol levels in the liver. The protective effect of 2-(allylthio)pyrazine on the DNA strand breakage induced by benzenetriol was assessed by measuring the conversion of supercoiled ${\Phi}x$-174 DNA to the open relaxed form. 2-(Allylthio)pyrazine blocked the benzenetriol-induced conversion of supercoiled DNA to open circular form in a dose-dependent manner. The presence of 2-(allylthio)pyrazine at the doses from I to 10mM in the incubation mixture containing 5 ${\mu}$M benzenetriol completely protected benzenetriol-induced DNA strand breakage with the EC50 for the 2-(allylthio)pyrazine blocking being noted as ~220 ${\mu}$M, whereas allyl disulfide exerted protecting effect at relatively high concentrations (i.e. ~850 ${\mu}$M), suggesting that 2-(allylthio)pyrazine effectively scavenges the reactive oxygen species. These results provide evidence that 2-(allylthio)pyrazine blocks vitamin A- or pyridine-potentiated CCl$_4$ hepatotoxicity and that the agent is active in protecting DNA by scavenging the reactive oxygen species.

  • PDF

Effect of Jujube Methanol Extract on the Hepatotoxicity in $CCl_4$-Treated Rats (대추 메탄을 추출물이 사염화탄소투여에 의한 흰쥐의 간 세포독성에 미치는 영향)

  • 나현숙;김경수;이명렬
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.5
    • /
    • pp.839-845
    • /
    • 1996
  • To investigate effects of Jujube methanol extract on the carbon tetrachloride-induced liver damage in rats, experimental animals were divided into 4 groups; control group(CON), Jujube methanol extracttreated group(JME), $CCl_4$- treated groups(CCl), and Jujube methanol extract and $CCl_4$-treated group (JMC). Each group was sacrificed after 2 or 4week feeding and determined the activities of serum transaminase(GOT, GPT) and hepatic xanthine oxidase, superoxide dismutase(SOD), catalase and glutathione peroxidase(GSH-Px), and hepatic contents of thiobarbituric acid-reactants(TBARS) and glutathione in liver. The activities of sGOT and sGPT, and the hepatic content of TBARS after $CCl_4$-treatment were markedly increased, compared to CON, but those levels were significantly decreased by the pretreatment of Jujube methanol extract, especially in sGOT after 2 and 4 week and TBARS after 4week respectively. Xanthine oxidase activity was increased by $CCl_4$- treatment as compared to CON, but it was also inhibited by the pretreatment of Jujube methanol extract for 2 and 4 week. The activities of SOD, catalase and GSH-Px were elevated by $CCl_4$-treatment, compared to CON, but those elevated activities were showed significant decreasing effect by pretreatment of Jujube methanol extract after 2 and 4week as compared to CON, however, hepatic catalase activity was not affected significantly. These results suggest that Jujube methanol extract is believed to be a possible protective effect for the carbon tetrachloride-induced hepatotoxicity in rats.

  • PDF

Growth of highly purified carbon nanotubes by thermal chemical vapor deposition (열화학기상증착법에 의한 고순도 탄소나노튜브의 성장)

  • Lee, Tae-Jae;Lee, Cheol-Jin;Kim, Dae-Won;Park, Jung-Hoon;Son, Kwon-Hee;Lyu, Seung-Chul;Song, Hong-Ki;Kim, Seong-Jeen
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1839-1842
    • /
    • 1999
  • We have synthesized carbon nanotubes by thermal chemical vapor deposition of $C_2H_2$ on transition metal-coated silicon substrates. Carbon nanotubes are uniformly synthesized on a large area of the plain Si substrates, different from Previously reported porous Si substrates. It is observed that surface modification of transition metals deposited on substrates by either etching with dipping in a HF solution and/or $NH_3$ pretreatment is a crucial step for the nanotube growth prior to the reaction of $C_2H_2$ gas. We will demonstrate that the diameters of carbon naotubes can be controlled by applying the different transition metals.

  • PDF

Evaluation of COD Solubilization and Reduction of Waste Activated Sludge by pH Control (pH 조절을 통한 폐활성 슬러지의 COD 가용화 및 감량화 평가)

  • Kim, Youn Kwon;Moon, Yong Taik;Kim, Ji Yeon;Seo, In Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.551-558
    • /
    • 2007
  • From the view point of biological wastewater treatment, C/N ratio is one of the most important factor in biological nutrient removal process. However, municipal sewage in Korea is characterized by extremely low content of carbon source and relatively higher portion of N source. Accordingly, it is necessary to dose external carbon source in order to obtain higher degree of carbon source within the process. In this study, the effects of pH pretreatment as an alternative plan for increasing carbon source on the cell disruption and COD solubility of waste activated sludge were conducted under well defined experimental conditions. During 5 hours, the value of COD solubilization rate ($S_R$) at pH 11.5 is approximately 4.4 times higher than the value of $S_R$ at pH 9.5. It is expected that the level of SCOD increased due to the result from cell disruption. However, VSS/TSS ratio was not significantly changed after 5 hours. As Alkalinity changes gradually from less than 15, 30 and 60 meq NaOH/L, average RBCOD/SCOD fraction showed 34, 36 and 45%,respectively.

Hot-filament 플라즈마화학기상증착법 이용한 패턴된 DLC층 위에 탄소나노튜브의 선택적 배열

  • Choe, Eun-Chang;Park, Yong-Seop;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.293-293
    • /
    • 2010
  • Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, CNT based transistors, and bio-sensors. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC filmswere observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.

  • PDF

The deposition characteristics of the diamond films deposited on Si, Inconel 600 and steel by microwave plasma CVD method (마이크로파 플라즈마 CVD 방법으로 Si, Inconel 600 및 Steel 모재위에 증착된 다이아몬드 박막의 증착특성)

  • 김현호;김흥회;이원종
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.133-141
    • /
    • 1995
  • The deposition characteristics of diamond films were investigated for three different substrates : Si, Inconel 600 and steel. Diamond films were prepared by microwave plasma CVD method using $CH_4$, $H_2$ and $O_2$ as reaction gases. The deposited films were analyzed with SEM, Raman spectroscopy and ellipsometer. For Si substrate, diamond films were successfully obtained for most of the deposition conditions used in this study. As the $CH_4$ flow rate decreased and the $O_2$ flow rate increased, the quality of the film was improved due to the reduced non-diamond phase in the film. For Inconel 600 substrate, the surface pretreatment with diamond powders was required to deposit a continuous diamond film. The films deposited at temperatures of $600^{\circ}C$ and $700^{\circ}C$ had mainly diamond phase, but they were peeled off locally due to the difference in the thermal expansion coefficient between the substrate and the deposited films. The films deposited at $500^{\circ}C$ and $850^{\circ}C$ had only the graphitic carbon phase. For steel substrate, all of the films deposited had only the graphitie carbon phase. We speculated that the formation of diamond nuclei on the steel substrate was inhibited due to the diffusion of carbon atoms into the steel substrate which has a large amount of carbon solubility.

  • PDF

Effect of Mechanical Polishing Pretreatment on Tribological Properties of Manganese Phosphate Coating of Carbon Steel (기계적 연마 전처리가 인산망간 피막의 윤활 특성에 미치는 영향)

  • Kim, Ho-Young;Noh, Young-Tai;Jeon, Jun-Hyuck;Kang, Ho-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.350-356
    • /
    • 2019
  • In this study, the effect of mechanical polishing of carbon steel on the tribological properties of manganese phosphate coating on carbon steel has investigated. The microstructure, surface morphology and chemical composition were analyzed by SEM, EDS, and XRD. The surface roughness test was carried out in order to calculate Rvk value by 3D laser microscopy. Also, the tribology property of manganese phosphate coating was tested by ball-on disk. In the results of EDS analysis, coating layer consists of elements such in Mn, P, Fe, and O. XRD showed that (Mn,Fe)5H2(PO4)4·4H2O in manganese phosphate coating layer was formed by the chemical reaction between manganese phosphate and elements in carbon steel. As the mechanical polishing degree increased, the friction coefficient was reduced. The rougher the mechanical polishing degree, the better corrosion resistance was obtained.

Enhanced Electrocatalytic Activity of Platinized Carbon Electrode via NaBH4 Treatment (NaBH4 화학적 처리를 통한 백금화 카본 전극의 촉매반응 향상)

  • Yun, Changsuk;Hwang, Seongpil
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.581-584
    • /
    • 2020
  • The effect of a chemical pretreatment on the surface carbon was investigated using a scanning electron microscope (SEM) and electrochemical methods. Primitive carbon has a reducing power likely due to incompletely oxidized functional groups on the surface. We aim to control this reducing power by chemical treatment and apply for the spontaneous deposition of nanoparticles (NPs). Highly ordered pyrolytic graphite (HOPG) was initially treated with a reducing agent, NaBH4 or an oxidizing agent, KMnO4, for 5 min. Subsequently, the pretreated carbon was immersed in a platinum (Pt) precursor. Unexpectedly, SEM images showed that the reducing agent increased spontaneous PtNPs deposition while the oxidizing agent decreased Pt loading more as compared to that of using bare carbon. However, the amount of Pt on the carbon obviously decreased by NaBH4 treatment for 50 min. Secondly, spontaneous reduction on pretreated glassy carbon (GC) was investigated using the catalytic hydrogen evolution reaction (HER). GC electrode treated with NaBH4 for a short and long time showed small (onset potential: -640 mV vs. MSE) and large overpotential for the HER, respectively. Although the mechanism is unclear, the electrochemistry results correspond to the optical data. As a proof-of-concept, these results demonstrate that chemical treatments can be used to design the shapes and amounts of deposited catalytic metal on carbon by controlling the surface state.