• Title/Summary/Keyword: Carbon particle

Search Result 1,027, Processing Time 0.025 seconds

Properties of Carbon Black Used as Catalysts for Methane Decomposition

  • Kim, Myung-Soo;Han, Ling;Dai, Shuangye;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2006
  • Direct decomposition of methane over three types of carbon black (N330-p, N330-f, and HI-900L) was carried out in a fluidized bed quartz reactor. Properties of carbon black before and after reaction were measured and found to be related with surface structure and weight gain. For N330-p and N330-f, some carbon deposit on the surface was considered to be the reason for the increase of BET surface area and pore volume with weight gain. Carbon deposits on the surface and the conglutination of some aggregates may explain the slight increase of particle size. Properties of HI-900L changed much more significantly with weight gain. It is supposed that the increase of aggregate size of HI-900L were due to some unknown oily components. The corresponding agglomeration might be the reason for the decrease of BET surface area with weight gain, as compared with the increase of that for the case of N330 black.

Measurement of Carbonaceous Species in Fine Particles at Kosan, Cheju Island during the Two Summer Seasons of 1994 and 1995 (제주도 고산에서의 1994~1995년 여름 입자상 탄소농도 측정)

  • 이종훈;백남준;심상규;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.3
    • /
    • pp.179-191
    • /
    • 1997
  • The concentrations of organic and elemental carbon were determined using fine particle samples collected from Kosan, Cheju Island during the summer seasons of 1994 and 1995. The daily mean concentrations of organic and elemental carbon for each measurement period were 3.74 and 0.27 $\mu\textrm{g}$/㎥ in 1994, while those of 1995 were 2.36 and 0.10 $\mu\textrm{g}$/㎥, respectively The concentrations of organic carbon were higher than those commonly observed from clean areas around the world, but those of elemental carbon were lower than, or comparable to, other clean areas in the world. The resulting ratios of total carbon to elemental carbon at this site were thus higher than those seen from other metropolitan and non-polluted regions abroad. In addition according to our analysis, the 1994 measurement period can be classified into two periods: enhanced (July 20 and August 1) and reduced levels (August 2 and 9) of the carbonaceous species. The observed difference between two periods may be in part accounted for by the air trajectories representing each period. During the former period, the air masses from the Asian continent and Japan were dominant, while the air masses from the North Pacific Ocean came during the latter period. OC/EC ratios at the site were calculated to predict the possible formation of secondary organic aerosol . Based on our observations, we suggest that the formation of secondary organic aerosol might be an important pathway to the production of organic carbons.

  • PDF

Screen-printed carbonaceous matrrials for photocapacitor electrode (스크린 프린터에 의한 광캐패시터용 카본 전극 제작)

  • Choi, Woo-Jin;Kwak, Dong-Joo;Sung, Youl-Moon;Ha, Soon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.411-414
    • /
    • 2009
  • Photo-capacitor electrodes are attracting great attention because of their high capacitance and potential applications in electronic devices. Carbon capacitor, active carbon capacitor and its combination will be fabricated using simple sandwich capacitor electrode method as carbonaceous material on each type of capacitor electrodes with 20 ${\times}$ 15 mm cell size. Carbon/active carbon cell was fabricated using sol-gel process with 120oC dry temperature in l hour and using sintering process with 500oC in 2 hour. The effect of sintering temperature on carbon properties was also investigated with X-ray diffraction technique to get the best sintering temperature. The detail of fabrication process will be explained. Elemental composition in electrode material can be measured using quantitative spectroscopic as and a cyclic voltammetric technique was used to study the combined effects of electrode material and effect of annealing temperature and also time on the capacitance of thermally treated in capacitor electrode. In this work, characterization impedance technique is used to measurement of capacitance and giving complementary results. Active carbon as carbonaceous material has a better capacitance in charge/discharge process with mean thickness $32{\mu}m$ and with particle size $1{\mu}m$ to $4.5{\mu}m$ in 20 ${\times}$ 15 mm sample size of capacitor electrode.

  • PDF

Fabrication and Characteristic Evaluation of Hybrid Carbon Nanotubes Reinforced SKD11 Cold Work Tool Steel (탄소나노튜브 강화 SKD11 냉간금형용 하이브리드 탄소나노소결체 제조 및 특성 평가)

  • Jung, Sung-Sil;Moon, Je-Se;Lee, Dae-Yeol;Youn, Kuk-Tae;Park, Chun-Dal;Song, Jae-Sun
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.291-296
    • /
    • 2013
  • SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. The CNTs was good additives to improve the mechanical properties of metal. In this study, 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. The SKD11+ CNT hybrid nanocomposites were investigated by FE-SEM, particle size distribution, hardness and wear resistance. The CNT was well dispersed in the SKD11 matrix and the mechanical properties of the composite were improved by CNTs addition. It shows good feasibility as cold work die tool.

Dielectric Properties of Carbon Black-Filled Polyethylene Matrix Composites (카본블랙 충진 Polyethylene Matrix Composites의 유전 특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.196-201
    • /
    • 2011
  • It is known that the relative dielectric constant of insulating polyethylene matrix composites with conducting materials (such as carbon black and metal powder) increases as the conducting material content increases below the percolation threshold. Below the percolation threshold, dielectric properties show an ohmic behavior and their value is almost the same as that of the matrix. The change is very small, but its origin is not clear. In this paper, the dielectric properties of carbon black-filled polyethylene matrix composites are studied based on the effect medium approximation theory. Although there is a significant amount of literature on the calculation based on the theory of changing the parameters, an overall discussion taking into account the theory is required in order to explain the dielectric properties of the composites. Changes of dielectric properties and the temperature dependence of dielectric properties of the composites made of carbon particle and polyethylene below the percolation threshold for the volume fraction of carbon black have been discussed based on the theory. Above the percolation threshold, the composites are satisfied with the universal law of conductivity, whereas below the percolation threshold, they give the critical exponent of s = 1 for dielectric constant. The rate at which the percentages of both the dielectric constant and the dielectric loss factor for temperature increases with more volume fraction below the percolation threshold.

Tribological Properties of Carbon black added Acrylonitrile-butadiene Rubber

  • Cho, Kyung-Hoon;Lee, Yang-Bok;Lim, Dae-Soon
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.601-605
    • /
    • 2007
  • The tribological properties of acrylonitrile-butadiene rubber (NBR) filled with two kinds of carbon black filler were examined. Different types of Semi-Reinforcing Furnace (SRF), and High Abrasion Furnace (HAF) blacks were used as filler material to test the influence of carbon black particle size on the friction and wear of NBR. Results from tribological tests using a ball on disk method showed that the smaller HAF particles were more effective for reducing the wear of NBR during frictional sliding. The hardness, elastic modulus at 100% elongation, and elongation at break were measured to examine the correlation between the effects of carbon black on the mechanical and tribological properties of the NBR specimens. The wear tracks of the NBR specimens were observed with scanning electron microscopy (SEM). The wear tracks for NBR with different ratios of SRF and HAF showed clearly different abrasion patterns. Mechanisms for the friction and wear behavior of NBR with different sizes of carbon black filler were proposed using evidence from wear track observation, as well as the mechanical and tribological test results.

Surface Properties of the High Porous Carbon Aerogels (고다공성 카본 에어로젤(C-Aerogel) 표면 특성)

  • Kim, Ji-Hye;Lee, Chang-Rae;Jeong, Young-Soo;Kim, Yang-Do;Kim, In-Bae
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.114-120
    • /
    • 2008
  • The pyrolysized carbon xerogel and aerogels were prepared from the sol-gel polymerization of resorcinol-formaldehyde(RF) followed by the dry process under ambient pressure and supercritical carbon dioxide condition respectively. The thermal behaviour of RF polymer xerogel was investigated with TGA analyzer to correspond with the pyrolysis process. The surface properties such as particle size, morphology and the point of zero charge of the pyrolysized porous carbon aerogels were studied for the precious metal catalyst supported media. It was found that the volume of the polymer aerogel decreased because of the significant linear shrinkage and weight loss of polymer gel during the carbonization. The point of zero charge of the carbon aerogel pyrolysized at $1050^{\circ}C$ under inert gas flow was about 10.

A Comparative Study on the Characteristics of Nanofluids to the Shape of Graphene and Carbon Nanotube (그래핀과 탄소나노튜브의 형상에 따른 나노유체의 열전도도 특성 비교 연구)

  • Park, Sung-Seek;Han, Sang-Pil;Jeon, Yong-Han;Kim, Jong-Yoon;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.99-106
    • /
    • 2013
  • Recently, high-thermal-conductivity graphene and carbon nanotube nanoparticles have attracted particularly close attention from researchers. In the present study, the thermal conductivity and viscosity properties of two kinds of graphene and carbon nanotube nanofluids added to distilled water - two graphenes and carbon nanotubes of differing size - were compared and analyzed. The thermal conductivities of the nanofluids, formulated in the usual manner by adding graphene and carbon nanotube to distilled water and subjecting the mixture to ultrasonic dispersion, were measured by the transient hot-wire method, and the viscosities were determined using a rotational digital viscometer. As a result, we concluded that the nanofluid of small particle diameter of graphene have outstanding properties as heat transfer media, due to their excellent thermal conductivity and viscosity, compared with the other nanofluid.

Effect of the Particle Size and Unburned Carbon Content on the Separation Efficiency of Fly ash in the Countercurrent Column Flotation (向流컬럼浮選機에서 石炭灰의 크기 및 未燃炭素 含量이 分離特性에 미치는 영향)

  • 이정은;이재근
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.36-44
    • /
    • 2000
  • Fly ash was composed of the unburned carbon and mineral particles. The former was able to attach on the bubbles, while the latter was not. Therefore, it was possible to separate the unburned carbon and the mineral from fly ash using the froth flotation process. This study was carried out to evaluate the separation efficiency as a function of the ny ash particle properties in the column flotation. Separation efficiency was analyzed for various size fraction of -38 fm,38~125 fm and 1125 W, and for various fly ash samples containing 7, 11, and 20 wt% unburned carbon. For the size fractions of -38 fm containing 7 wt% unburned carbon, separation efficiency was 86ft, whereas separation efficiency was found to be 74% for the size fraction of +125$\mu\textrm{m}$ containing 20 wt% unburned carbon. The results indicated that separation efficiency increased with the decrease in the particle size and the unburned carbon content of the fly ash.

  • PDF

An Experimental Study of Dilution Methods for Preventing Volatile Particle Generation during Measurement of Diesel Particle Number Concentration (디젤 극미세입자 개수 농도 측정시 Volatile Particle 생성을 억제할 수 있는 희석방법에 관한 실험적 연구)

  • Yim, Tae-Ho;Kim, Hong-Suk;Cho, Hyoung-Mun;Lee, Jin-Wook;Jeong, Young-Il;Jeon, Heung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2009
  • Recently, Europe decided to start the regulation of diesel engine nanoparticles because of its well known adverse health effects. The diesel nanoparticles can be classified as solid carbon particles and volatile particles. The volatile particles generates during dilution process by condensation of gas phase volatile compounds such as hydrocarbon. The new nanoparticle regulation considers only solid particles because of difficulty of measurement of volatile particles. The aim of this study is to suggest a proper dilution method that prevent the volatile particle generation. As a result, it is found that the $1^{st}$ dilution air temperature should be above $120^{\circ}C$ in order to prevent volatile particle generation effectively. It is also found that the volatile particles can be removed effectively in the evaporation tube by the increase of evaporation tube temperature. But when exhaust gas is hot enough (>$190^{\circ}C$, in this study) and it is diluted in the first diluter with high temperature air (>$120^{\circ}C$), removal phenomenon of volatile particles by increasing of evaporation tube temperature can not be seen. It means that there are no volatile particles in the diluted exhaust gas. Additionally, dilution ratio is not an important factor for volatile particle generation compared with dilution air temperature or evaporation tube temperature.