• Title/Summary/Keyword: Carbon particle

Search Result 1,027, Processing Time 0.037 seconds

A Study on the Characteristics of Plasma Blacks Prepared by Plasma Pyrolysis Over Metals Coated Honeycomb Catalysts

  • Park, Soo-Yeop;Lee, Joong-Kee;Yoo, Kyung-Seun;Cho, Won-Ihl;Baek, Young-Soon
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.74-78
    • /
    • 2003
  • Four kinds of plasma blacks were prepared by plasma pyrolysis under various metallic catalysts coated on honeycomb, and investigated the catalytic effect on the characteristics of the plasma blacks prepared under plasma pyrolysis condition. Pt, Pt-Rh, and Pd catalysts were employed as active materials to prepare the plasma blacks. In the experimental range studied, the metallic catalysts influenced on surface area, particle size, surface oxygen content and electrical conductivity of the plasma blacks prepared. It was showed that more dense particle of plasma blacks were prepared under existence of metallic catalysts. Presence of the metallic catalyst reduces the electrical resistivity of plasma blacks due to the decrease in the amount of oxygen functional groups. The highest electrical conductivity of plasma black was observed in the Pt catalyst and then followed by those Pt-Rh, Pd and bare cordierite honeycomb.

  • PDF

The consolidation of CNT/Cu mixture powder using equal channel angular pressing (Equal Channel Angular Pressing 공정을 이용한 CNT/Cu 복합분말의 고형화)

  • Yoon, S.C.;Quang, P.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.119-122
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of 1 vol.% carbon nanotube (CNT)-metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT-Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature. It was found by mechanical testing of the consolidated 1 vol.% CNT-Cu that high mechanical strength could be achieved effectively as a result of the Cu matrix strengthening and improved particle bonding during ECAP. The ECAP processing of powders is a viable method to achieve fully density CNT-Cu nanocomposites.

  • PDF

The Kinetics of $Si_3N_4$ Formation from Korean Rice Hulls (국산 왕겨로부터 질화규소 형성에 관한 속도론적 연구)

  • 강상원;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 1979
  • Themogravimetric analysis was used to investigate the kinetics of the $Si_3N_4$ formation from Korean rice hulls in the temperature range from $1990^{\circ}C$ to $1370^{\circ}C$. The experimental results indicated that the reaction rate controlling step in the overall process is the diffusion of CO gas from the surface of carbon particle to main body of $N_2$ gas fluid through the stagnant gas film around the carbon particle. The kinetics followed a nearly linear rate law at the initil reaction stage. The activiation energy for the formation of $Si_3N_4$ from Korean rice hulls was 43.5Kcal/mole.

  • PDF

Synthesis of Carbon-Supported Pt-Ru Catalysts using a Flame Spray Pyrolysis Method for Fuel Electrode of Low Temperature Fuel Cell (화염분무열분해 공정을 이용한 저온 연료전지 연료전극용 탄소담지 Pt-Ru 촉매의 제조)

  • Lee, Hyun-Min;Lee, Dong-Geun
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.69-74
    • /
    • 2012
  • This study describes how successfully a conventional flame aerosol synthesis was used to continuously synthesize Pt-Ru catalysts supported by carbon agglomerates. Nearly spherical catalysts produced in the flame were mainly composed of metallic Pt and Ru with the molar ratio of 1:1 and those sizes were controllable from ~1.5 nm to ~2.0 nm. Nevertheless, only Pt peaks were found from X-ray diffraction experiments, suggesting that amorphous-like Ru was well mixed in the crystalline Pt lattices. It was found from Cyclo-voltamograms and CO stripping experiments that the electrochemical properties of the catalysts are at least comparable to that of a conventional commercial sample.

The operation Characteristic of Pilot-scale 2-Stage Coal gasifier (Pilot 규모 2단 형상 가스화기 운전특성 실험)

  • Hong, Jin-Pyo;Chung, Jae-Hwa;Seo, Seok-Bin;Chi, Jun-Hwa;Lee, Seung-Jun;Chung, Suk-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.528-532
    • /
    • 2009
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of gasification process to type and structure of gasifier. For this purpose, the performance characteristics of gasification reaction are analyzed with the operation characteristic of pilot-scale 2-stage coal gasifier. It is found that gasification reaction, floating characteristic of melted slag, particle stick of inside of the gasifier, particle stick and deposit of Syngas cooler are the causes in the different performance characteristics.

  • PDF

The Study on the Application of CNT Particle in High-Precision Magnetic Abrasive Polishing Process (초정밀 자기연마 공정에 탄소나노튜브 입자의 적용에 관한 연구)

  • Kwak, Tae-Kyung;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.274-279
    • /
    • 2011
  • In this study, new abrasives that were composed of iron powder and carbon nanotube (CNT) particle were attempted to be abrasives for magnetic abrasive polishing. Because the CNT particles itself are very small ones with high hardness and magnetic strength, these properties are effective for magnetic abrasive polishing of nonmagnetic materials. As an experimental result for evaluating the machining characteristics in magnetic abrasive polishing, the CNT particles showed better performance than the conventional abrasives such as Fe and CBN powder.

Electric Collection Filter for Ultrafine Dust Removal (초미세먼지 제거를 위한 전기집진 필터에 관한 연구)

  • Kim, Yong Sun;Ko, Sang Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.40-45
    • /
    • 2022
  • In recent years, indoor air pollution has become a crucial environmental problem. Hence, the purification of indoor air is an important issue. Typical physical filters show relatively high dust collection efficiency at a dust particle size of more than 5.0 ㎛ but extremely low efficiency at an ultrafine size of less than 2.5 ㎛. In this study, an electric field filter was proposed to capture ultrafine dust with a size of less than 5.0 ㎛. Simulation results showed that the electric field filter effectively removed ultrafine dust. In addition, sufficient dust collection efficiency was obtained even with a simple plate-shaped filter without bending the Chevron filter.

Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor (합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자 선정)

  • Ryu, Ho-Jung;Kim, Ji-Woong;Jo, Wan-Kuen;Park, Moon-Hee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.506-514
    • /
    • 2007
  • To select the best oxygen carrier particle for syngas fueled chemical-looping combustor, the reduction reactivity and carbon deposition characteristics were determined in a thermogravimetric analyzer. Four kinds of oxygen carrier particles (NiO/bentonite, $NiO/LaAl_{11}O_{18}$, $Co_xO_y/CoAl_2O_4$, $NiO/NiAl_2O_4$) were tested with the simulated syngas (30% $H_2$, 10% $CO_2$, 60% CO) as a reduction gas. With each of these particles, the maximum conversion and oxygen transfer capacity increase with increasing the reduction temperature At the given experimental range, the optimum operating temperature to maximize oxygen transfer rate is found to be $900^{\circ}C$ and carbon deposition on the particles could avoid at the temperature above $800^{\circ}C$. Among four kinds of oxygen carrier particles, the NiO-based particles exhibits better reactivity than the CoO-based particle. Moreover, the NiO/bentonite particle produces the best reactivity based on the oxygen transfer rate and the degree of carbon deposition. The measured oxygen transfer rate increases as the metal oxide content in NiO/bentonite particle is increased thereby higher metal oxide contents could provide stable operation of chemical-looping combustor.

Characteristic Analyses of Residual Particles Generated in Amorphous Carbon Layer Deposition (Amorphous carbon layer 증착 중 발생하는 입자의 증착 조건별 특성 분석)

  • Kim, Dong-Bin;Jeong, Won-Jun;Mun, Ji-Hun;Park, Hye-Ji;Sin, Jae-Su;Kim, Tae-Wan;Kim, Tae-Seong;Gang, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.118.2-118.2
    • /
    • 2016
  • 3D NAND 제조에 있어 high-aspect-ratio etch 공정을 견뎌낼 수 있는 hardmask 소재로서 amorphous carbon layer (ACL) 가 각광받고 있으며 hardmask로서의 특성을 향상시키기 위해 다양한 연구가 진행중에 있다 [1]. 본 연구팀의 기존 연구에서 질소 및 붕소 doping 된 ACL 박막의 etch rate 및 Raman 분석을 통해 박막 특성을 확인한 바 있었으나, 공정 중 arcing이 일어나는 등 의도치 않은 문제로 인해 공정 최적화에 일부 문제가 존재하였다. 본 연구에서는 plasma enhanced chemical vapor deposition (PECVD) 공정을 통해 C6H12 기체 및 doping을 위한 NH3 와 B2H6 두 기체를 이용하여 특성 개선된 ACL을 증착하는 과정에서 발생하는 arcing 및 증착 특성을 규명하고자 진공 내 입자의 수농도를 실시간 측정할 수 있는 particle beam mass spectrometer(PBMS)를 적용, 특정 공정 사건 진단 및 해당 사건에서 발생하는 입자를 분석, 증착된 박막의 Raman spectroscopy 결과와 비교 분석하였다.

  • PDF

Study on the Pt/C Catalyst Preparation for PAFC's Electrode (PAFC 전극용 카본블랙상 백금촉매 담지에 관한 연구)

  • Kim, Yeong-Woo;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.522-529
    • /
    • 1993
  • To raise the utilization of precious platinum currently used as catalyst for PAFC's electrode, it is very important to make fine particles of platinum. This study, for preparing highly dispersed platinum catalyst on carbon black, method. And then loading yield of platinum catalyst on carbon black and the particle size were investigated by DCP and XRD and/or TEM respectively. The colloid method by which platinum particle size could be reduced as small as below $30{\AA}$ showed the best result among them, and the loading yield of platinum catalyst on carbon black was above 99%.

  • PDF