• Title/Summary/Keyword: Carbon nanotube fiber

Search Result 122, Processing Time 0.025 seconds

Interfacial Evaluation of Single-Carbon Fiber/Phenolic and Carbon Nanotube-Phenolic Composites Using Micromechanical Tests and Electrical Resistance Measurements (미세역학시험법과 전기저항 측정을 이용한 탄소섬유/페놀수지 및 탄소나노튜브-페놀수지 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Jong-Kyoo;Lee, Woo-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.11 no.4
    • /
    • pp.149-154
    • /
    • 2010
  • Interfacial evaluation was investigated for single-carbon fiber/phenolic and carbon nanotube (CNT)-phenolic composites by micromechanical technique and electrical resistance measurement combined with wettability test. Compressive strength of pure phenol and CNT-phenolic composites were compared using Broutman specimen. The contact resistance of CNT-phenolic composites was obtained using a gradient specimen by two and four-point methods. Surface energies and wettability by dynamic contact angle measurement were measured using Wilhelmy plate technique. Since hydrophobic domains are formed as heterogeneous microstructure of CNT in the surface, the dynamic contact angle exhibited more than $90^{\circ}$. CNT-phenolic composites exhibited a higher apparent modulus than neat phenolic case due to better stress transferring effect. Work of adhesion, $W_a$ between single-carbon fiber and CNT-phenolic composites exhibited higher than neat phenolic resin due to the enhanced viscosity by CNT addition. It was consistent with micro-failure patterns in microdroplet test.

Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating (형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Lee, En-Seon;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • Manufacture of nancomposites has simple process for developing nanocomposites due to the increasing applications using nanofillers. This work studied nanofiller coated glass fiber for reinforcing material with good wetting and conductivity and the morphology of nanofiller coated glass fiber was analyzed by FE-SEM. The durability of reinforced glass fiber was investigated with different shapes of nanofillers using sonication rinsing method. Fatigue test was performed to evaluate the adhesion of reinforcing interface and stability of nanofiller coating layer for single fiber reinforced composites. Apparent modulus and conductivity of nanofiller coating layer were evaluated to realize multifunctional of nanocomposites. Fiber type of nanofiller was better than plate type due to better cohesion between fiber and nanofillers. At last, the stability of fiber type nanofiller of coating layer has better durability and conductivity than plate type case.

Plasma Treatment of Carbon Nanotubes and Interfacial Evaluation of CNT-Phenolic Composites by Acoustic Emission and Dual Matrix Techniques (음향 방출과 이중 기지 기술을 이용한 탄소나노튜브의 플라즈마 처리 효과에 따른 탄소나노튜브-페놀 복합재료의 계면특성 평가)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Lee, Woo-Il;Park, Jong-Kyoo;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.76-81
    • /
    • 2012
  • Atmospheric pressure plasma treatment on carbon nanotube (CNT) surfaces was performed to modify reinforcement effect and interfacial adhesion of carbon fiber reinforced CNT-phenolic composites. The surface changes occurring on CNT treated with plasma were analyzed by using Fourier transform infrared spectroscope (FT-IR). The significant improvement of wettability on CNT was confirmed by static contact angle test after plasma treatment. Such plasma treatment resulted in a decrease in the advancing contact angle from $118^{\circ}$ to $60^{\circ}$. The interfacial adhesion between carbon fiber and CNT-phenolic composites increased by plasma treatment based on apparent modulus test results during quasi-static tensile strength. Furthermore, the proposed database offers valuable knowledge for evaluating interfacial shear strength (IFSS).

Fabrication and Applications of Polyphenylene Sulfide (PPS) Composites: A Short Review (폴리페닐렌설파이드(PPS) 복합소재 제조 및 응용)

  • Choi, Minsik;Lee, Jungrok;Ryu, Seongwoo;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.91-100
    • /
    • 2020
  • Polyphenylene sulfide (PPS) is a semi-crystalline engineering thermoplastic resin that has outstanding thermal stability, mechanical strength, inherent flame retardancy, chemical resistance, and electrical properties. Due to these outstanding properties, it is preferred as a matrix for composite materials. Many studies have been conducted to produce composites with carbon fibers and glass fibers to improve mechanical properties and provide functionality of PPS. In this review paper, we report a brief introduction to the fabrication and applications of PPS composites with carbon nanotubes, graphene, carbon fibers, and glass fibers.

Preparation and Characterization of Poly(phenylene sulfide)-Functionalized MWNTs (폴리(페닐렌 설파이드)로 기능화된 다중벽 탄소나노튜브의 제조와 특성분석)

  • Hong, Sung Yeon;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.791-800
    • /
    • 2014
  • 4-Chlorobenzoyl (CB) group-attached multi-walled carbon nanotube (c-MWNT) was prepared via a direct Friedel-Crafts acylation of MWNT with 4-chlorobenzoic acid (CBA) in a $P_2O_5$/poly(phosphoric acid) medium. c-MWNT with a maximum chlorine content of 5.3 wt% (CB group content of 20.9 wt%) was obtained by controlling the amount of CBA during the reaction. Using a self-condensation polymerization of 4-chlorobenzenethiol (CBT) to poly(phenylene sulfide) (PPS), MWNT-g-PPS was prepared by adding c-MWNT of chlorine content of 5.3 wt% during the self-polymerization of CBT and removing homo PPS after polymerization in order to increase the interfacial interaction between PPS and MWNT. Thermal and surface properties of the MWNT-g-PPS were characterized. The results showed that PPS was formed on the surface of c-MWNT by the condensation of c-MWNT and CBT.

Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor

  • Woo, Sungyoon;Jo, Mingyeong;Lee, Joon-Seok;Choi, Seung-Ho;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.369-375
    • /
    • 2021
  • In this study, heterogeneous ZnO/CNTF composites were developed to improve the NO2-sensing response, facilitated by the self-heating property. Highly conductive and mechanically stable CNTFs were prepared by a wet-spinning process assisted by the liquid crystal (LC) behavior of CNTs. Metal-organic frameworks (MOFs) of ZIF-8 were precipitated on the surface of the CNTF (ZIF-8/CNTF) via one-pot synthesis in solution. The subsequent calcination process resulted in the formation of the ZnO/CNTF composites. The calcination temperatures were controlled at 400, 500, and 600 ℃ in an N2 atmosphere to confirm the evolution of the microstructures and NO2-sensing properties. Gas sensor characterization was performed at 100 ℃ by applying a DC voltage to induce Joule heating through the CNTF. The results revealed that the ZnO/CNTF composite after calcination at 500 ℃ (ZnO/CNTF-500) exhibited an improved response (Rair/Rgas = 1.086) toward 20 ppm NO2 as compared to the pristine CNTF (Rair/Rgas = 1.063). Selective NO2-sensing properties were demonstrated with negligible responses toward interfering gas species such as H2S, NH3, CO, and toluene. Our approach for the synthesis of MOF-driven ZnO/CNTF composites can provide a new strategy for the fabrication of wearable gas sensors integrated with textile materials.

The Application of Fiber-Reinforced Composites to Electromagnetic Wave Shielding Enclosures (섬유강화 복합재료의 전자파 차폐 기구물에 대한 적용에 관한 연구)

  • Park Ki-Yeon;Lee Sang-Eui;Lee Won-Jun;Kim Chun-Gon;Han Jae-Hung
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • As the structures of the high performance electronic equipments and devices recently become more complex, the electromagnetic interference (EMI) and compatibility (EMC) have been very essential for commercial and military purposes. Thus, sensitive electrical devices and densely packed systems need to be protected from electromagnetic wave. In this research, glass fabric/epoxy composites containing conductive multi-walled carbon nanotube (MWNT) and carbon fiber/epoxy composites as electrical shielding materials were fabricated and electrical properties of the composites were measured. The concerning frequency band is from 300 MHz to 1 GHz. The performances of composite shielding enclosures were predicted using electromagnetic wave 3-D simulation tool, CST Microwave Studio. The shielding enclosure made of carbon fiber/epoxy composites were fabricated and the shielding effectiveness (SE) was measured in the anechoic chamber.

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites

  • Taraghi, Iman;Fereidoon, Abdolhossein;Mohyeddin, Ali
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.825-834
    • /
    • 2014
  • This manuscript presents an experimental investigation on the effect of Multi-walled carbon nanotubes (MWCNTs) addition on the tensile, flexural and impact properties of woven Kevlar fabric reinforced epoxy composites. MWCNTs were dispersed in the epoxy resin by sonication technique and the samples were fabricated by hand layup laminating procedure. Scanning electron microscopy (SEM) was used to characterize the microstructure of produced samples. The effects of adding small amounts (${\leq}1%$) of MWCNT on the tensile, flexural and impact (Izod) behaviors of laminated composites were analyzed. Results revealed that MWCNTs enhanced the Young's modulus up to 20%, bending modulus up to 40%, and impact strength up to 45% in comparison with woven Kevlar fabric/epoxy composites. It was found that the maximum improvements in mechanical properties were happened for 0.5 wt.% MWCNT.

An Experimental Study on the Improvement of Structural Performance for Concrete Structure Spraying Composite Polyurea (복합폴리우레아를 도포한 콘크리트 구조물의 구조성능 개선에 관한 실험적 연구)

  • Cho, Dong-Ho;Kim, Jin-Bong;Kim, Tae-Wan;Eun, Hee-Chang
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • This study investigates the applicability of composite polyurea to contain fiber reinforcement like fiber glass, steel fiber and carbon nanotube. Polyurea as elastomer is an excellent water-proofing material with many mechanical characteristics such as high tensile strength, ductility, high rate of expansion and contraction, and so on. The reinforcing fibers can be utilized for improving the load-carrying capacity of concrete structures. The polyurea plays a role to improve the ductility and toughness. Composite polyurea takes the mechanical advantages of the fibers and the polyurea. The test variables include the type of reinforcing fiber, its spraying thickness, and its weight ratio contained in the composite polyurea. It is observed that the load-carrying capacity, and the ductility and toughness are improved with the increase in the spraying thickness and the weight ratio contained in the composite polyurea. It is expected that the composite polyurea can be widely utilized in enhancing the structural and seismic performance.