• 제목/요약/키워드: Carbon nanotube

검색결과 1,660건 처리시간 0.024초

Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory

  • Rakrak, Kaddour;Zidour, Mohamed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Chemi, Awda
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.31-44
    • /
    • 2016
  • This article is concerned with the free vibration problem for chiral double-walled carbon nanotube (DWCNTs) modelled using the non-local elasticity theory and Euler Bernoulli beam model. According to the governing equations of non-local Euler Bernoulli beam theory and the boundary conditions, the analytical solution is derived and two branches of transverse wave propagating are obtained. The numerical results obtained provide better representations of the vibration behaviour of double-walled carbon nanotube, where the aspect ratio of the (DWCNTs), the vibrational mode number, the small-scale coefficient and chirality of double-walled carbon nanotube on the frequency ratio (${\chi}^N$) of the (DWCNTs) are significant. In this work, the numerical results obtained can be used to predict and prevent the phenomenon of resonance for the forced vibration analyses of double -walled carbon nanotubes.

그래핀과 탄소나노튜브의 형상에 따른 나노유체의 열전도도 특성 비교 연구 (A Comparative Study on the Characteristics of Nanofluids to the Shape of Graphene and Carbon Nanotube)

  • 박성식;한상필;전용한;김종윤;김남진
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.99-106
    • /
    • 2013
  • Recently, high-thermal-conductivity graphene and carbon nanotube nanoparticles have attracted particularly close attention from researchers. In the present study, the thermal conductivity and viscosity properties of two kinds of graphene and carbon nanotube nanofluids added to distilled water - two graphenes and carbon nanotubes of differing size - were compared and analyzed. The thermal conductivities of the nanofluids, formulated in the usual manner by adding graphene and carbon nanotube to distilled water and subjecting the mixture to ultrasonic dispersion, were measured by the transient hot-wire method, and the viscosities were determined using a rotational digital viscometer. As a result, we concluded that the nanofluid of small particle diameter of graphene have outstanding properties as heat transfer media, due to their excellent thermal conductivity and viscosity, compared with the other nanofluid.

Low-impedance Tetrodes using Carbon Nanotube-Polypyrrole Composite Deposition

  • Kim, Minseo;Shin, Jung Hwal;Lim, Geunbae
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.73-78
    • /
    • 2017
  • A tetrode is one of the neural electrodes, and it is widely used to record neural signals in the brain of a freely moving animal. The impedance of a neural electrode is an important parameter because it determines the signal-to-noise ratio of the recorded neural signals. Here, we developed a modification technique using carbon nanotube-polypyrrole composite nanostructures to decrease the impedances of tetrodes. The synthesis of the carbon nanotube and polypyrrole nanostructures was performed in two steps. In the first step, randomly dispersed carbon nanotubes and pyrrole monomers were gathered and aligned on the tetrode electrode. Next, they were electro-polymerized on the electrode surface. As the applied time (step-1 and step-2) and the offset voltage increased, the impedances of the tetrodes decreased. The modification technique is, therefore, an important and useful of lowering the impedances of tetrodes.

성장방법이 서로 다른 탄소나노튜브의 인장시험 (Tensile test of multi-walled carbon nanotube with different growth methods)

  • 장훈식;이윤희;백운봉;박종서;남승훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.200-203
    • /
    • 2007
  • Carbon nanotubes (CNTs) have attracted an increasing attention due to their superior mechanical properties and potential application in industries. The strength of CNT has been predicted or calculated through several simulation techniques but actual experiments on stress-strain behavior are rare due to its dimensional limit, nanoscale positioning/manipulation, and instrumental resolution. We have attempted to observe straining responses of a multi-walled carbon nanotube (MWNT) with different growth methods by performing an in-situ tensile testing in a scanning electron microscope. Linear deformation and fracture behaviors of MWNT were successfully observed and its force-displacement curve was also measured from the bending stiffness and displacement of the force sensor and manipulator. We also obtained different tensile load of carbon nanotube with different growth methods.

  • PDF

Fabrication of Carbon Nanotube Field Emitters

  • Yoon, Hyeun-Joong;Jeong, Dae-Jung;Jun, Do-Han;Yang, Sang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.121-124
    • /
    • 2008
  • This paper presents the fabrication and field emission of carbon nanotube field emitters for a micro mass spectrometer. The carbon nanotube is an adequate material as a field emitter since it has good characteristics. We have successfully fabricated a diode field emitter and a triode field emitter. Each field emitter has been constructed using several micromachining processes and a thermal CVD process. In the case of the diode field emitter, to increase the electric field, the carbon nanotubes are selectively grown on the patterned nickel catalyst layer. The electron current of the diode field emitter is 73.2 ${\mu}A$ when the anode voltage is 1100V. That of the triode field emitter is 3.4 pA when the anode voltage is 1000V.

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • 제6권2호
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.

표면장력과 열팽창계수 불일치가 단일벽 탄소나노튜브 필름의 전도성에 미치는 영향 연구 (Effect of the top coating surface tension and thermal expansion matching on the electrical properties of single-walled carbon nanotube network films)

  • 김준석;한중탁;;정희진;정승열;이건웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.42-42
    • /
    • 2010
  • We have characterized the previously undescribed parameters for engineering the electrical properties of single-walled carbon nanotube (SWCNT) films for technological applications. The surface tension of the top coating passivation material and matching coefficients of thermal expansion for the substrate and carbon nanotube network are two crucial parameters for the fabrication of reliable and highly conductive single-walled carbon nanotube network thin films.

  • PDF

표면장력과 열팽창계수 불일치가 단일벽 탄소나노튜브 필름의 전도성에 미치는 영향 연구 (Effect of the top coating surface tension and thermal expansion matching on the electrical properties of single-walled carbon nanotube network films)

  • 김준석;한중탁;정희진;정승열;이건웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.278-278
    • /
    • 2010
  • We have characterized the previously undescribed parameters for engineering the electrical properties of single-walled carbon nanotube (SWCNT) films for technological applications. The surface tension of the top coating passivation material and matching coefficients of thermal expansion for the substrate and carbon nanotube network are two crucial parameters for the fabrication of reliable and highly conductive single-walled carbon nanotube network thin films.

  • PDF