Browse > Article
http://dx.doi.org/10.5369/JSST.2017.26.2.73

Low-impedance Tetrodes using Carbon Nanotube-Polypyrrole Composite Deposition  

Kim, Minseo (Department of Integrative Bioscience and Biotechanology, Pohang University of Science and Technology (POSTECH))
Shin, Jung Hwal (Department of mechanical engineering, Pohang University of Science and Technology (POSTECH))
Lim, Geunbae (Department of mechanical engineering, Pohang University of Science and Technology (POSTECH))
Publication Information
Abstract
A tetrode is one of the neural electrodes, and it is widely used to record neural signals in the brain of a freely moving animal. The impedance of a neural electrode is an important parameter because it determines the signal-to-noise ratio of the recorded neural signals. Here, we developed a modification technique using carbon nanotube-polypyrrole composite nanostructures to decrease the impedances of tetrodes. The synthesis of the carbon nanotube and polypyrrole nanostructures was performed in two steps. In the first step, randomly dispersed carbon nanotubes and pyrrole monomers were gathered and aligned on the tetrode electrode. Next, they were electro-polymerized on the electrode surface. As the applied time (step-1 and step-2) and the offset voltage increased, the impedances of the tetrodes decreased. The modification technique is, therefore, an important and useful of lowering the impedances of tetrodes.
Keywords
Tetrode; Carbon nanotube; Polypyrrole; Pyrrole monomer; Impedance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bruce L. McNaughton, John O'Keefe, Carol A. Barnes, "The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records", ResearchGate, Vol. 8, pp. 391-397, 1983.
2 Wilson M. A., McNaughton B. L., "Dynamics of the hippocampal ensemble code for space", Science, Vol. 261, pp. 1055-1058, 1993.   DOI
3 Robinson, D. A., "The electrical properties of metal microelectrodes", Proceedings of the IEEE, Vol. 56, pp. 561065-1071, 1968.
4 Geddes L. A., "Electrodes and the measurement of bioelectric events", New York : Wiley-Interscience, 1972.
5 Loeb G. E., Peck R. A., J. Martyniuk, "Toward the ultimate metal microelectrode", J. Neurosci. Methods, Vol. 63, pp. 175-183, 1995.   DOI
6 Ludwig K. A., Uram J. D., Yang J., Martin D. C., Kipke D. R., "Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film", J. Neural. Eng., Vol. 3, pp. 59-70, 2006.   DOI
7 Cogan S. F., "Neural stimulation and recording electrodes", Annu. Rev. Biomed. Eng., Vol. 10, pp. 275-309, 2008.   DOI
8 Cui X., Lee V. A., Raphael Y., Wiler J. A., Hetke J. F., Anderson D. J., Martin D. C., "Surface modification of neural recording electrodes with conducting polymer/biomolecule blends", J. Biomed. Mater. Res., Vol. 56, pp. 261-272, 2001.   DOI
9 Venkatrman S., Hendricks J., King Z. A., Sereno A. J., Richardson-Burn S., Martin D., Carmen J. M., "In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording", IEEE Trans Neural Syst. Rehabil. Eng., Vol. 19, pp. 307-316, 2011.   DOI
10 Blau A., Murr A., Wolff S., Sernagor E., Medini P., Iurilli G., Ziegler C., Benfenati F., "Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals", Biomaterials, Vol. 32, pp. 1778-1786, 2011.   DOI
11 Negi S., Bhandari R., Rieth L., Van Wagenen R., Solzbacher F., "Neural Electrode Degradation from Continuous Electrical Stimulation: Comparison of Sputtered and Activated Iridium Oxide", J. Neurosci. Methods, Vol. 186, pp. 8-17, 2010.   DOI
12 Lin Z. C., Xie C., Osakada Y., Cui Y., Cui B., "Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials", Nature Communications, Vol. 5, pp. 3206, 2014.   DOI
13 Wang K., Fishman H. A., Dai H., Harris J. S., "Neural Stimulation with a Carbon Nanotube Microelectrode Array", Nano Lett., Vol. 6, pp. 2043-2048, 2006.   DOI
14 Ansaldo A., Castagnola E., Maggiolini E., Fadiga L., Ricci D., "Superior Electrochemical Performance of Carbon Nanotubes Directly Grown on Sharp Microelectrodes", ACS Nano, Vol. 5, pp. 2206-2214, 2011.   DOI
15 Fung A. O., Tsiokos C., Paydar O., Chen L. H., Jin S., Wang Y., Judy J. W., "Electrochemical Properties and Myocyte Interaction of Carbon Nanotube Microelectrodes", Nano Lett., Vol. 10, pp. 4321-4327, 2010.   DOI
16 Keefer E. W., Botterman B. R., Romero M. I., Rossi A. F., Gross, G. W., "Carbon nanotube coating improves neuronal recordings", Nat Nano, Vol. 3, pp. 434-439, 2008.   DOI
17 Shin J. H., Kim G. B., Lee E. J., An T., Shin K., Lee S. E., Lim G., "Carbon-Nanotube-Modified Electrodes for Highly Efficient Acute Neural Recording", Advanced Healthcare Materials, Vol. 3, pp. 245-252, 2014.   DOI
18 Iijima S., "Helical microtubules of graphitic carbon", Nature, Vol. 354, pp. 56-58, 1991.   DOI
19 Cooper G., Noufi R., Frank A. J., Nozik A. J., "Oxygen evolution on tantalum-polypyrrole-platinum anodes", Nature, Vol. 295, pp. 578-580, 1982.   DOI
20 Ramanavicius A., Ramanaviciene A., Malinauskas A., "Electrochemical sensors based on conducting polymer-polypyrrole", Electrochimica Acta, Vol. 51, pp. 6025-6037, 2006.   DOI
21 Peng C., Zhang S., Jewell D., Chen G. Z., "Carbon nanotube and conducting polymer composites for supercapacitors", Progress in Natural Science, Vol. 18, pp. 777-788, 2008.   DOI