• 제목/요약/키워드: Carbon hydrogenation

검색결과 49건 처리시간 0.02초

Efficient Hydrogenation Catalysts of Ni or Pd on Nanoporous Carbon Workable in an Acidic Condition

  • Lee, Dong-Hwan;Kim, Hong-Gon;Kang, Min;Kim, Ji-Man;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.2034-2040
    • /
    • 2007
  • Efficient catalytic systems, where Ni or Pd is introduced in a supporting material of nanoporous carbon, have been developed for a liquid-phase hydrogenation of carboxylic acids and ketones at room temperature. It has been found that the catalysts reliably show high activities and selectivities for the hydrogenation to alcohols even in acidic conditions, and the catalytic activities depend on the preparative method of catalysts, the hydrogen pressure, the agitation rate, and the catalytic species. The hydrogenation of carboxylic acids and ketones clearly shows that the reaction rate is affected by the electronic and the steric effects, and a plausible reaction mechanism using metal hydrides as catalytic species is proposed.

Carbon-silica composites supported Pt as catalyst for asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate

  • Mao, Cong;Zhang, Jie;Xiao, Meitian;Liu, Yongjun;Zhang, Xueqin
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1480-1485
    • /
    • 2018
  • Mesoporous carbon-silica composites supported Pt nanoparticle catalysts (Pt/MCS) were firstly applied to the heterogeneous asymmetric hydrogenation of ethyl 2-oxo-4-phenylbutyrate (EOPB). A series of different silica contents were investigated in the fabrication of this mesoporous material. When the volume of added tetraethyl orthosilicate (TEOS) during the preparation of composites is 8 mL, Pt/MCS-8 holds carbon and silica as the main components and possesses relatively strong acidity, mesoporous structures with micropores, appropriate Pt nanoparticle size and high dispersibility showing by XRD, XPS, TPD, $N_2$ sorption and TEM. These properties cause its good catalytic performance in the heterogeneous asymmetric hydrogenation of EOPB with the enantiomeric excess value and conversion up to 85.6% and 97.8%, respectively.

Catalytic hydrogenation-assisted preparation of melt spinnable pitches from petroleum residue for making mesophase pitch based carbon fibers

  • Lee, Dong Hun;Choi, Jisu;Oh, Young Se;Kim, Yoong Ahm;Yang, Kap Seung;Ryu, Ho Jin;Kim, Yong Jung
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.28-35
    • /
    • 2017
  • We demonstrated an effective way of preparing melt spinnable mesophase pitches via catalytic hydrogenation of petroleum residue (fluidized catalytic cracking-decant oil) and their subsequent thermal soaking. The mesophase pitches thus obtained were analyzed in terms of their viscosity, elemental composition, solubility, molecular weight, softening point and optical texture. We found that zeolite-induced catalytic hydrogenation under high hydrogen pressure contributed to a large variation in the properties of the pitches. As the hydrogen pressure increased, the C/H ratio decreased, and the solubility in n-hexane increased. The mesophase pitch with entirely anisotropic domains of flow texture exhibited good meltspinnability. The mesophase carbon fibers obtained from the catalytically hydrogenated petroleum residue showed moderate mechanical properties.

Effect of Preparation Conditions on the Hydrogenation Activity and Metal Dispersion of Pt/C and Pd/C Catalysts

  • Jhung, Sung-Hwa;Lee, Jin-Ho;Lee, Jong-Min;Lee, Ji-Hye;Hong, Do-Young;Kim, Myong-Woon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.563-568
    • /
    • 2005
  • The Pt/C and Pd/C catalysts were prepared from conventional chloride precursors by adsorption or precipitation-deposition methods. Their activities for hydrogenation reactions of cyclohexene and acetophenone were compared with those of commercial catalysts. The Pt/C and Pd/C catalysts obtained from the adsorption procedure reveal higher hydrogenation activity than commercial catalysts and the catalysts prepared by the precipitation-deposition method. Their improved performances are attributed to the decreased metal crystallite sizes of Pt or Pd formed on the active carbon support upon the adsorption of the precursors probably due to the same negative charges of the chloride precursor and the carbon support. Under the preparation conditions studied, the reduction of the supported catalysts using borohydrides in liquid phase is superior to a gas phase reduction by using hydrogen in the viewpoint of particle size, hydrogenation activity and convenience.

고에너지 밀도 바나듐 레독스 흐름 전지를 위한 망간산화물 촉매와 다공성 탄소 기재의 시너지 효과 (Synergistic Effect of the MnO Catalyst and Porous Carbon Matrix for High Energy Density Vanadium Redox Flow Battery)

  • 김민성;고민성
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.150-155
    • /
    • 2019
  • The carbon electrode was modified through manganese-catalyzed hydrogenation method for high energy density vanadium redox flow battery (VRFB). During the catalytic hydrogenation, the manganese oxide deposited at the surface of the carbon electrode stimulated the conversion reaction from carbon to methane gas. This reaction causes the penetration of the manganese and excavates a number of cavities at electrode surface, which increases the electrochemical activity by inducing additional electrochemically active site. The formation of the porous surface was confirmed by the scanning electron microscopy (SEM) images. Finally, the electrochemical performance test of the electrode with the porous surface showed lower polarization and high reversibility in the cathodic reaction compared to the conventional electrode.

1-Hexyl-3-methylimidazolium Tetrafluoroborate으로 제조된 팔라듐 탄소촉매를 이용한 Hexafluoropropylene 수소화 반응 (Development of Hexafluoropropylene Hydrogenation with Pd/C Particles Prepared with 1-Hexyl-3-methylimidazolium Tetrafluoroborate)

  • 정지백;유계상
    • 공업화학
    • /
    • 제24권4호
    • /
    • pp.412-415
    • /
    • 2013
  • 상온 이온성액체 중 하나인 1-hexyl-3-methylimidazolium tetrafluoroborate을 이용하여 팔라듐이 담지된 탄소입자를 제조하였다. 제조된 입자는 hexafluoropropylene (HFP) 수소화 반응용 촉매로 사용되었다. 또한 최적의 수소화 반응공정을 개발하기 위하여 다양한 반응조건에서 반응을 수행하였다. 팔라듐의 함량의 경우 3 wt% 이상을 유지하고 이온성액체와 팔라듐전구체의 몰비가 1 : 1로 합성된 촉매가 우수한 수소화 반응성을 보였다. 반응조건의 경우 수소와 HFP의 유량비가 1.25 이상이고 $GHSV_{HFP}$는 50000 mL/g-h 이하일 때 전환율 100%를 달성하였다.

Adsorbed Carbon Formation and Carbon Hydrogenation for CO2 Methanation on the Ni(111) Surface: ASED-MO Study

  • Choe, Sang-Joon;Kang, Hae-Jin;Kim, Su-Jin;Park, Sung-Bae;Park, Dong-Ho;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1682-1688
    • /
    • 2005
  • Using the ASED-MO (Atom Superposition and Electron Delocalization-Molecular Orbital) theory, we investigated carbon formation and carbon hydrogenation for $CO_2$ methanation on the Ni (111) surface. For carbon formation mechanism, we calculated the following activation energies, 1.27 eV for $CO_2$ dissociation, 2.97 eV for the CO, 1.93 eV for 2CO dissociation, respectively. For carbon methanation mechanism, we also calculated the following activation energies, 0.72 eV for methylidyne, 0.52 eV for methylene and 0.50 eV for methane, respectively. We found that the calculated activation energy of CO dissociation is higher than that of 2CO dissociation on the clean surface and base on these results that the CO dissociation step are the ratedetermining of the process. The C-H bond lengths of $CH_4$ the intermediate complex are 1.21 $\AA$, 1.31 $\AA$ for the C${\cdot}{\cdot}{\cdot}H_{(1)}$, and 2.82 $\AA$ for the height, with angles of 105${^{\circ}}$ for ∠ $H_{(1)}$CH and 98${^{\circ}}$ for $H_{(1)} CH _{(1)}$.

니켈촉매에 의한 크로톤 알데히드의 액상 수소첨가반응 (Liquid Phase Hydrogenation of Croton Aldehyde with Nickel Catalysts)

  • 이학성;박영해;김용섭
    • 공업화학
    • /
    • 제5권3호
    • /
    • pp.509-516
    • /
    • 1994
  • 에탄올의 제조시 불순물로서 미량 생성되는 크로톤 알데히드를 수소와 반응시켜 n-부틸알콜로 전환하여 불포화 탄화수소를 제거하는 공정에 액상수소 첨가반응을 이용하고자 하며, 기존의 기상 수소첨가반응보다 월등한 에너지 절약 효과가 있다. 반응촉매는 내구성 및 가격 등 경제적인 측면을 고려하여 니켈촉매를 선택하였으며, 반응전화율의 측정은 PMT(permanganate time) test 방법을 적용하였다. PMT는 에탄올에 미량으로 함유되어 있는 크로톤알데히드의 초기농도 증가에 따라 급격히 감소하였으며, 크로톤 알데히드로부터 n-부틸알콜로의 수첨반응은 탄소-탄소 이중결합의 환원 후, 알데히드의 환원 과정이 연속적으로 일어나고, 각 반응단계는 0차 반응속도 상수를 가진다. 실험조건 범위 내에서는 반응 온도가 높을수록, LHSV가 느릴수록 PMT는 길어지고, 반응압력은 PMT와 거의 무관함을 보였다.

  • PDF

나노탄소섬유를 이용한 다공성 탄소담체의 제조와 반응 특성 (Preparation of Porous Carbon Support Using Carbon Nanofiber)

  • 김명수;정상원;우원준;임연수
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.504-512
    • /
    • 1999
  • The high-quality carbon nanofibers were prepared by chemical vapor deposition of gas mixtures of CO-H2 and C3H8-H2 over Fe-Cu and Ni-Cu bimetallic catalysts. The yield and structure of carbon nanofiber produced were altered by the change of catalyst composition and reaction temperature. The high yields were obtained around 500$^{\circ}C$ with e-Cu catalyst and around 700-750$^{\circ}C$ with Ni-Cu catalyst and the relatively higher yields were obtained with the bimetallic catalyst containing 50-90% of Ni and Fe respectively in comparison with the pure metals. The carbon nanofibers produced over the Fe-Cu catalyst at around 500$^{\circ}C$ with the maximum yields had the highest surface ares of 160-200 m2/g around 650$^{\circ}C$ which was slightly lower than the temperature for maximum yields. In order to examine the characteristics of carbon nanofibers as catalyst support Ni and Co metals were supporte on the carbon nanofibers and CO hydrogenation reaction was performed with the catalysts. The particle size distribution of Ni and Co supported over the carbon nanofibers were 6-15 nm and the CO hydrogenation reaction rate with the carbon-nanofiber supported catalysts was much higher than that over the other supports.

  • PDF

Cu/ZnO/Cr2O3/Al2O3 촉매를 이용한 이산화탄소의 수소화 연구 (A Study on the Hydrogenation of CO2 Using Cu/ZnO/Cr2O3/Al2O3 Catalysts)

  • 심규성;한상도;김종원;김연순;명광식;박기배
    • 한국수소및신에너지학회논문집
    • /
    • 제7권2호
    • /
    • pp.147-155
    • /
    • 1996
  • 지구온난화를 방지하기 위하여 대기중에 방출되는 이산화탄소를 고정화시키는 기술의 하나로 이산화탄소를 접촉수소화시키는 연구를 수행하였다. 수소화 촉매로는 $Cu/ZnO/Cr_2O/Cr_2O_3/Al_2O_3$를 기본으로 하여 여기에 팔라듐을 추가한 촉매들을 이용하였으며, 200서 $350^{\circ}C$ 사이의 온도에서 상압 및 고압의 조건에서 수소화 반응을 행하였다. 그 결과 수소화 반응에 가장 적합한 반응조건은 반응온도 $250^{\circ}C$, 반응압력 30기압 이상에서 메탄올의 선택도와 수율이 제일 좋았다. 그러나 예상한 바와는 달리 팔라듐의 첨가에 의한 반응성의 향상은 없었다.

  • PDF