• 제목/요약/키워드: Carbon glass

검색결과 750건 처리시간 0.03초

VARTM 법으로 제작한 탄소-유리/에폭시 하이브리드 적층재의 인장 특성 (Tensile Properties of Carbon-Glass/Epoxy Hybrid Laminates Produced by VARTM)

  • 김연직
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.760-765
    • /
    • 2011
  • This paper presents a study of the tensile behavior of carbon and glass fiber reinforced epoxy hybrid laminates manufactured by vacuum assisted resin transfer molding (VARTM). The objective of this study was to develop and characterize carbon fiber reinforced plastic hybrid composite material that is low cost and light-weight and that possesses adequate strength and stiffness. The effect of position and content of the glass fabric layer on the tensile properties of the hybrid laminates was examined. The strength and stiffness of the hybrid laminates showed a steady decrease with an increase of the glass fabric content this decrease was almost linear. Fracture strain of these laminates showed a slight increasing trend when glass fabric content was increased up to 3 layers, but at a glass fabric content > 3 layers the strain was almost constant. When glass fabric layers were at both outer surfaces, the hybrid laminate exhibited a slightly higher tensile strength and elastic modulus due to the small amount of glass yarn pull-out.

Combined effect of glass and carbon fiber in asphalt concrete mix using computing techniques

  • Upadhya, Ankita;Thakur, M.S.;Sharma, Nitisha;Almohammed, Fadi H.;Sihag, Parveen
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.253-279
    • /
    • 2022
  • This study investigated and predicted the Marshall stability of glass-fiber asphalt mix, carbon-fiber asphalt mix and glass-carbon-fiber asphalt (hybrid) mix by using machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest(RF), The data was obtained from the experiments and the research articles. Assessment of results indicated that performance of the Artificial Neural Network (ANN) based model outperformed applied models in training and testing datasets with values of indices as; coefficient of correlation (CC) 0.8492 and 0.8234, mean absolute error (MAE) 2.0999 and 2.5408, root mean squared error (RMSE) 2.8541 and 3.3165, relative absolute error (RAE) 48.16% and 54.05%, relative squared error (RRSE) 53.14% and 57.39%, Willmott's index (WI) 0.7490 and 0.7011, Scattering index (SI) 0.4134 and 0.3702 and BIAS 0.3020 and 0.4300 for both training and testing stages respectively. The Taylor diagram also confirms that the ANN-based model outperforms the other models. Results of sensitivity analysis show that Carbon fiber has a major influence in predicting the Marshall stability. However, the carbon fiber (CF) followed by glass-carbon fiber (50GF:50CF) and the optimal combination CF + (50GF:50CF) are found to be most sensitive in predicting the Marshall stability of fibrous asphalt concrete.

서프보드 적용을 위한 하이브리드 복합재료의 열적 특성 (Thermal Characteristics of Hybrid Composites for Application to Surfboard)

  • 김윤해;이진우;박창욱;박수정
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.351-355
    • /
    • 2014
  • Today, carbon fibers are used as heating elements. Carbon fibers are generally used to reinforce composite materials because they are lightweight and have a high strength and modulus. Carbon fiber reinforced composite materials are used for aerospace, automobile, and wind turbine blade applications. This work explored the possibility of using carbon fiber reinforced composite materials as self heating materials. The temperatures of the carbon fiber reinforced composites were measured. These results verified that the carbon fiber reinforced composite materials could be used as heating elements. A glass fiber was laminated using various methods. The thermal characteristics of the composites were evaluated. This confirmed that the generation of heat varied according to the lamination thicknesses of the carbon fiber and glass fiber. As the number of carbon fiber laminations increased, the heat-generating temperature increased. In contrast, as the number of glass fiber laminations increased, the amount of heat decreased. The generation of heat and ability to remain warm could be controlled by controlling the carbon fiber and glass fiber laminations.

카본블랙/섬유강화 복합재료의 전자파 차폐효과 (Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite)

  • 김진석;한길영;안동규;이상훈;김민수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

Efficient repair of damaged FRP-reinforced geopolymeric columns using carbon fiber reinforced polymers

  • Mohamed Hechmi El Ouni;Ali Raza;Khawar Ali
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.585-599
    • /
    • 2023
  • Geopolymer concrete (GC) can be competently utilized as a practical replacement for cement to prevent a high carbon footprint and to give a direction toward sustainable concrete construction. Moreover, previous studies mostly focused on the axial response of glass fiber reinforced polymer (glass-FRP) concrete compressive elements without determining the effectiveness of repairing them after their partial damage. The goal of this study is to assess the structural effectiveness of partially damaged GC columns that have been restored using carbon fiber reinforced polymer (carbon-FRP). Bars made of glass-FRP and helix made of glass-FRP are used to reinforce these columns. For comparative study, six of the twelve circular specimens-each measuring 300 mm×1200 mm-are reinforced with steel bars, while the other four are axially strengthened using glass-FRP bars (referred to as GSG columns). The broken columns are repaired and strengthened using carbon-FRP sheets after the specimens have been subjected to concentric and eccentric compression until a 30% loss in axial strength is attained in the post-peak phase. The study investigates the effects of various variables on important response metrics like axial strength, axial deflection, load-deflection response, stiffness index, strength index, ductility index, and damage response. These variables include concentric and eccentric compression, helix pitch, steel bars, carbon-FRP wrapping, and glass-FRP bars. Both before and after the quick repair process, these metrics are evaluated. The results of the investigation show that the axial strengths of the reconstructed SSG and GSG columns are, respectively, 15.3% and 20.9% higher than those of their original counterparts. In addition, compared to their SSG counterparts, the repaired GSG samples exhibit an improvement in average ductility indices of 2.92% and a drop in average stiffness indices of 3.2%.

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • 제15권3호
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi;Kwon, Yong-Jung
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.148-154
    • /
    • 2010
  • It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.

Fabrication Techniques for Carbon Nanotube Field Emitters by Screen Printing

  • Yi, Mann;Jung, Hyuk;Lee, Dong-Gu;Seo, Woo-Suk;Park, Jong-Won;Chun, Hyun-Tae;Koh, Nam-Je
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.655-657
    • /
    • 2002
  • The carbon nanotube emitters for field emission displays were fabricated by screen printing techniques. The pastes for screen printing are composed of organic binders, carbon nanotubes, and some additive materials. Then the pastes were printed on Cr-coated/Ag-printed soda-lime glass substrates. From the I-V characteristics, the turn-on field of SWNT was lower than that of MWNT. The decrease in the mesh size of screen masks resulted in decreasing the turn-on field and increasing the electron emission current. When the carbon nanotubes were mixed with glass frit, glass frit appeared to contribute to the vertically aligning of carbon nanotubes on glass.

  • PDF

풀트루젼과 와인딩 기법을 혼합한 탄소-유리 하이브리드 복합재 보강근 설계 (Design of Carbon-Glass Hybrid Composite Rebar by the Combined Pultrusion and Winding)

  • 권진회;최수영;최진호;이상관;박영환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.9-12
    • /
    • 2004
  • Presented is a preliminary design concept of the carbon-glass hybrid composite rebars for the application in the construction field. A glass fiber rod with indentation is used for the core of the rebar. Carbon fibers are placed over the glass core by pultrusion. To increase the mechanical locking force and bonding surface, carbon filament windings are added in the hoop direction over the carbon face. Finite element analysis and test were conducted to evaluate the effective stiffness and strength of the rods. The results show that the effective axial stiffness of the rebar with indentation are about $50\%$ of the straight rebar.

  • PDF

Carbon-Nanotube-Modified Glass Micropipette for Simultaneous Drug Injection and Neural Monitoring

  • Shin, Jung Hwal;Kim, Geon Hwee;Kim, Intae;Lim, Hoon;Lim, Geunbae
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.309-314
    • /
    • 2013
  • Glass micropipettes are widely used for drug injection in neurological studies. To enable these devices to monitor neural activity simultaneously with drug injection, an electrode such as Ag/AgCl must be located near or inserted into the glass micropipette to detect electrical signals in vivo. Here, we report carbon-nanotube-modified glass micropipettes (CNGs), which have excellent electrochemical properties such as low impedance and large electrochemical surface area suited for neural recording. In addition, using a standard pressure pump, CNGs can deliver drugs to the target region without bending. Because they are based on standard glass micropipettes, CNGs can readily be applied to traditional equipment, creating opportunities to monitor precisely the drug-injected area.