DOI QR코드

DOI QR Code

Carbon-Nanotube-Modified Glass Micropipette for Simultaneous Drug Injection and Neural Monitoring

  • Shin, Jung Hwal (Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Geon Hwee (Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Intae (Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lim, Hoon (Department of Emergency Medicine, Soon Chun Hyang University Hospital) ;
  • Lim, Geunbae (Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH))
  • Received : 2013.08.14
  • Accepted : 2013.09.06
  • Published : 2013.09.30

Abstract

Glass micropipettes are widely used for drug injection in neurological studies. To enable these devices to monitor neural activity simultaneously with drug injection, an electrode such as Ag/AgCl must be located near or inserted into the glass micropipette to detect electrical signals in vivo. Here, we report carbon-nanotube-modified glass micropipettes (CNGs), which have excellent electrochemical properties such as low impedance and large electrochemical surface area suited for neural recording. In addition, using a standard pressure pump, CNGs can deliver drugs to the target region without bending. Because they are based on standard glass micropipettes, CNGs can readily be applied to traditional equipment, creating opportunities to monitor precisely the drug-injected area.

Keywords

References

  1. T. V. Tsulaia, N. L. Prokopishyn, A. Yao, N. D. V. Carsrud, M. C. Carou, D. B. Brown, B. R. Davis, and J. Y. Brown, "Glass needle-mediated microinjection of macromolecules and transgenes into primary human mesenchymal stem cells", J. Biomed. Sci., Vol. 10, pp. 328-336, 2003. https://doi.org/10.1007/BF02256452
  2. H. Matsuoka and M. Saito, "High throughput microinjection technology toward single-cell bioelectrochemistry", Electrochemistry, Vol. 74, No. 1, pp. 12-18, 2006. https://doi.org/10.5796/electrochemistry.74.12
  3. D. J. Stephens and R. Pepperkok, Stephens DJ and Pepperkok R., "The many ways to cross the plasma membrane", Proc. Natl. Acad. Sci. U. S. A., Vol. 98, No. 8, pp. 4295-4298, 2001. https://doi.org/10.1073/pnas.081065198
  4. S. F. Cogan, "Neural stimulation and recording electrodes", Annu. Rev. Biomed. Eng., Vol. 10, pp. 275-309, 2008. https://doi.org/10.1146/annurev.bioeng.10.061807.160518
  5. T. An, K. S. Kim, S. K. Hahn, and G. Lim, "Real-time, step-wise, electrical detection of protein molecules using dielectrophoretically aligned SWNT-film FET aptasensors", Lab Chip, Vol. 10, No. 16, pp. 2052-2056, 2010. https://doi.org/10.1039/c005276k
  6. E. W. Keefer, B. R. Bolterman, M. I. Romero, A. F. Rossi, and G. W. Gross, "Carbon nanotube coating improves neuronal recordings", Nat. Nanotechnol., Vol. 3, No. 7, pp. 434-439, 2008. https://doi.org/10.1038/nnano.2008.174
  7. S. Minnikanti and N. Peixoto, "Implantable electrodes with carbon nanotube coatings", In: Marulanda JM, editor. Carbon Nanotub. Appl. Electron Devices, InTech, 2011.
  8. Schrlau MG, Falls EM, Ziober BL, and Bau HH, "Carbon nanopipettes for cell probes and intracellular injection", Nanotechnology, Vol. 19, No. 1, pp. 015101-015105, 2008. https://doi.org/10.1088/0957-4484/19/01/015101
  9. M. G. Schrlau, N. J. Dun, and H. H. Bau, "Cell electrophysiology with carbon nanopipettes", ACS Nano, Vol. 3, No. 3, pp. 563-568, 2009. https://doi.org/10.1021/nn800851d
  10. R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, "Small diameter carbon nanopipettes", Nanotechnology, Vol. 21, No. 1, p. 015304, 2010. https://doi.org/10.1088/0957-4484/21/1/015304
  11. R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazagiou, G. Friedman, and Y. Gogotsi, "Multifunctional carbon-nanotube cellular endoscopes", Nat. Nanotechnol., Vol. 6, No. 1, pp. 57-64, 2011. https://doi.org/10.1038/nnano.2010.241
  12. G. E. Loeb, R. A. Peck, and J. Martyniuk, "Toward the ultimate metal microelectrode", J. Neurosci. Methods, Vol. 63, pp.175-183, 1995. https://doi.org/10.1016/0165-0270(95)00107-7
  13. D. A. Robinson, "The electrical properties of metal microelectrodes", Proc. IEEE, Vol. 56, pp. 1065-1071, 1968. https://doi.org/10.1109/PROC.1968.6458
  14. K. A. Ludwig, J. D. Uram, J. Yang, D. C. Martin, and D. R. Kipke, "Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film", J. Neural Eng., Vol. 3, pp. 59-70, 2006. https://doi.org/10.1088/1741-2560/3/1/007
  15. T. An, W. Choi, E. Lee, I. Kim, W. Moon, and G. Lim, "Fabrication of functional micro- and nanoneedle electrodes using a carbon nanotube template and electrodeposition", Nanoscale Res. Lett., Vol. 6, p. 306, 2011. https://doi.org/10.1186/1556-276X-6-306
  16. J. H. Shin, G. B. Kim, E. J. Lee, T. An, K. Shin, S. E. Lee, W. Choi, S. Lee, C. Latchoumane, S. H. Shin, and G. Lim, "Carbon-nanotube-modified electrodes for highly efficient acute neural recording", Adv. Healthc. Mater., 2013.
  17. G. A. Crespo, S. Macho, J. Bobacka, F. X. Rius, "Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes", Anal. Chem., Vol. 81, No. 2, pp. 676-681, 2009. https://doi.org/10.1021/ac802078z
  18. Conway BE, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, 1999. B. E. Conway,