• 제목/요약/키워드: Carbon foam

검색결과 138건 처리시간 0.026초

S Foam Core를 적용한 자전거 사용 편의성에 중점을 둔 모듈형 자전거 액세서리 디자인 연구 (Module-type bicycle accessory design research focusing on bicycle user convenience by applying S Foam Core)

  • 박유진;송성일;강승민
    • 한국결정성장학회지
    • /
    • 제29권1호
    • /
    • pp.32-38
    • /
    • 2019
  • 서비스디자인 방법론을 통해 사용 편의성에 중점을 둔 신개념의 모듈형 자전거 액세서리를 탄소 소재를 이용하여 개발하였다. 기존의 탄소 재질을 사용할 경우 자전거 주행 중 충격에 견디지 못하거나, 파손 현상이 발생하였으며, 이러한 문제점을 해결하고자 새로운 소재(S Foam Core 소재)를 적용 하였다. 기존 탄소 재질과 S Foam Core 소재의 강도, 뒤틀림 강도, 충격흡수 및 진동감쇄 측정을 하였고, S Foam Core가 적용된 제품이 기존 탄소 소재 보다 더 우수한 결과를 얻었다. 본 연구에서는 S Foam Core 소재로 프로토 타입을 제작하여, 자체 실험을 통해 검증하였고, 이를 보고하고자 한다.

망상형 탄소폼의 열처리 온도가 기계적 물성에 미치는 영향 (Effects of Heat-treatment Temperature on Mechanical Properties of Reticulated Carbon Foams)

  • 한윤수;이성민;김형태
    • 한국세라믹학회지
    • /
    • 제49권3호
    • /
    • pp.236-240
    • /
    • 2012
  • The reticulated carbon foam have been used for their excellent properties in terms of thermal management which is getting important in industrial field currently. In this study, we measure the mechanical properties of the reticulated carbon foam which is heat-treated at various temperature from the prepared low-density phenol foam. Simultaneously, we observe microstructures with high resolution transmission microscope and measure the residual oxygen content of carbon foams to figure out the relationship between the apparent change of properties such as weight loss and linear shrinkage during heat treatment. In conclusion, the carbon foam heat-treated at $1400^{\circ}C$ shows the highest strength, and the mechanical behavior is believed to be strongly related to the creation of nano-size graphite crystals from the amorphous carbon during heat treatment. On the other hand, it is turned out that the weight loss occurred at the temperature under $1400^{\circ}C$ comes from the elimination of oxygen in the form of $CO_2$ or CO, but no evidence is found on weight loss mechanism at the temperature above $1400^{\circ}C$.

야자계 활성탄을 활용한 폼 복합체의 미세기공 구조특성 (Characteristics of Micro-pore Structure of Foam Composite using Palm-based Activated Carbon)

  • 최영철;유성원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.157-164
    • /
    • 2021
  • 최근 미세먼지와 관련된 환경문제를 개선하기 위해 유해물질을 제거할 수 있는 광촉매와 흡착제에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 전체 공극량이 일반 건설재료에 비해 상당히 큰 폼 콘크리트에 다량의 마이크로 공극를 갖는 야자계 활성탄소를 이용해서 다공성 폼 복합체를 제작하였다. 미세먼지 흡착 가능성을 평가하기 위해 제작된 폼 복합체에 대해 공극 구조를 분석하였다. 폼 복합체의 공극구조 분석은 측정된 질소 흡착등온선으로부터 BET와 Harkins-jura이론을 적용하였다. 분석결과 활성탄소를 혼입한 폼 복합체의 비표면적과 마이크로 공극 부피가 Plain보다 크게 증가하였다. 활성탄소 혼입율이 증가할수록 폼 복합체의 비표면적과 마이크로 공극 부피가 증가하는 경향을 나타냈다. 이는 폼 복합체가 가스상의 미세먼지 전구물질 NOX에 대한 흡착성능이 높을 것으로 보인다.

탄화온도 및 재담금 처리에 따른 중공형 탄소다공체의 기공구조 및 특성 (Pore Structure and Characteristics of Hollow Spherical Carbon Foam According to Carbonization Temperature and Re-immersion Treatment)

  • 이은주;이창우;김양도;임영목
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.24-30
    • /
    • 2013
  • Today, the modification of carbon foam for high performance remains a major issue in the environment and energy industries. One promising way to solve this problem is the optimization of the pore structure for desired properties as well as for efficient performance. In this study, using a sol-gel process followed by carbonization in an inert atmosphere, hollow spherical carbon foam was prepared using resorcinol and formaldehyde precursors catalyzed by 4-aminobenzoic acid; the effect of carbonization temperature and re-immersion treatment on the pore structure and characteristics of the hollow spherical carbon foam was investigated. As the carbonization temperature increased, the porosity and average pore diameter were found to decrease but the compression strength and electrical conductivity dramatically increased in the temperature range of this study ($700^{\circ}C$ to $850^{\circ}C$). The significant differences of X-ray diffraction patterns obtained from the carbon foams carbonized under different temperatures implied that the degree of crystallinity greatly affects the characteristics of the carbon form. Also, the number of re-impregnations of carbon form in the resorcinol-formaldehyde resin was varied from 1 to 10 times, followed by re-carbonization at $800^{\circ}C$ for 2 hours under argon gas flow. As the number of re-immersion treatments increased, the porosity decreased while the compression strength improved by about four times when re-impregnation was repeated 10 times. These results imply the possibility of customizing the characteristics of carbon foam by controlling the carbonization and re-immersion conditions.

FABRICATION OF ZrO2-BASED NANOCOMPOSITES FOR TRANSURANIC ELEMENT-BURNING INERT MATRIX FUEL

  • MISTARIHI, QUSAI;UMER, MALIK A.;KIM, JOON HUI;HONG, SOON HYUNG;RYU, HO JIN
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.617-623
    • /
    • 2015
  • $ZrO_2$-based composites reinforced with 6.5 vol.% of carbon foam, carbon fiber, and graphite were fabricated using spark plasma sintering, and characterized using scanning electron microscopy and X-ray diffractometry. Their thermal properties were also investigated. The microstructures of the reinforced composites showed that carbon fiber fully reacted with $ZrO_2$, whereas carbon foam and graphite did not. The carbothermal reaction of carbon fiber had a negative effect on the thermal properties of the reinforced $ZrO_2$ composites because of the formation of zirconium oxycarbide. Meanwhile, the addition of carbon foam had a positive effect, increasing the thermal conductivity from 2.86 to $3.38Wm^{-1}K^{-1}$ at $1,100^{\circ}C$. These findings suggest that the homogenous distribution and chemical stability of reinforcement material affect the thermal properties of $ZrO_2$-based composites.

발포 프라스틱의 착화특성 및 연소가스 분석 (Ignition Characteristics and Combustion Gas Analysis of the Plastics Foam)

  • 이근원;김관응
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.48-52
    • /
    • 2001
  • This study was undertaken to investigate fire risk characteristics of the plastics foam that is used an insulating materials in workplaces. The ignition characteristics and combustion gas of the plastics foam were carried out using the ISO self-Ignition tester, the Cone Calorimeter, and NES combustion analyzer. The experimental materials used were commercial samples and their composition is not disclosed by the manufacturer. As the experimental results, the self-ignition temperature of the plastics foam ranges from $410^{\circ}C$ to $510^{\circ}C$, and the flash-ignition temperature of plastics foam ranges from $370^{\circ}C$ to $450^{\circ}C$. The difference of ignition temperature on density with plastics foam type was smaller since the amount of combustible gas to ignite is not caused enough. The time to ignition of the polyethylene foam in samples of the plastics foam was shorter, and its of polyethylene foam was longer. The concentration of carbon dioxide of the polyethylene foam shows higher in samples of the plastics foam. It is found that the concentration values of carbon monoxide of the plastics foam show very fatality on people during exposure of 30 minutes in fire.

  • PDF

카본블랙이 내첨된 핏치로부터 폴리우레탄 조공제를 이용한 탄소 폼의 제조 및 특성 (The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template)

  • 이상민;김지현;정의경;이영석
    • Korean Chemical Engineering Research
    • /
    • 제54권2호
    • /
    • pp.268-273
    • /
    • 2016
  • 탄소 폼의 기계적 강도를 향상시키기 위하여, PVA 용액에 다양한 함량의 카본블랙 및 메조페이스 핏치를 첨가하여 폴리우레탄 폼에 함침한 후 열처리를 통하여 카본블랙이 첨가된 탄소 폼을 제조하였다. 탄소 폼의 셀 벽의 두께는 첨가된 카본블랙의 함량에 따라 조절되며, 탄소 폼의 압축강도는 셀 벽의 두께가 증가함에 따라 증가되는 것이 확인되었다. 이에 따라 핏치 함량 대비 5 wt%의 카본블랙을 탄소 폼에 첨가하였을 때 가장 높은 $0.44g/cm^3$의 겉보기 밀도에서 가장 높은 $0.22{\pm}0.05MPa$의 압축강도가 얻어졌다. 그러나 탄소 폼의 열전도도는 카본블랙이 첨가되었을 때 오히려 감소하는 것으로 나타났다. 이러한 결과는 탄소 폼에 카본블랙 첨가로 인한 흑연 층간 간격($d_{002}$)의 증가로 탄소 폼의 열전도도가 오히려 감소되는 것으로 나타났다.

직조 탄소섬유 발포 고분자 샌드위치 구조의 굽힘특성 (Bending Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structures)

  • 장승환;장태성;최진호;전성식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.131-134
    • /
    • 2004
  • In this paper, a representative unit volume (RUV) model was employed to simulate thermoforming process of carbon fabric-polymeric foam sandwich structures. Thermoforming simulations, which capture crimp angles and amplitude changes of carbon fabric with respect to different types of foams under the operating pressure were conducted with the help of RUV model. Changed shapes of tow structure after thermoforming were reflected in the two dimensional to determine mechanical properties of skin parts, i.e_ carbon fabric composites after thermoforming. Bending simulations with respect to different foam systems as well as different moduli of carbon fabric composites were successfully carried out by using properties obtained from two-dimensional analyses.

  • PDF

유한요소해석을 이용한 직조 탄소섬유 발포 고분자 샌드위치 구조의 압축특성 (FE Analyses of the Compressive Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structure)

  • 장승환;전성식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.194-197
    • /
    • 2004
  • In this paper, compressive characteristics of carbon fabric skin with polymeric foam core sandwich structure were investigated by FE analyses and compressive tests of polyurethane foam were also conducted with respect to temperature changes, which were determined by curing processes of epoxy or polyester resin to obtain mechanical behaviour of polyurethane foam. FE analyses indicated variation of parameters with respect to manufacturing pressure, which have comparatively massive effect upon mechanical properties of sandwich structures, i.e. wavelength as well as crimp angle of carbon fabric

  • PDF

폐 플로랄 폼을 이용한 슈퍼커패시터용 다공성 탄소 폼 제조 및 전기화학 성능 평가 (Preparation and Electrochemical Characterization of Porous Carbon Foam from Waste Floral Foam for Supercapacitors)

  • 이병민;박진주;박상원;윤제문;최재학
    • 한국재료학회지
    • /
    • 제32권9호
    • /
    • pp.369-378
    • /
    • 2022
  • The recycling of solid waste materials to fabricate carbon-based electrode materials is of great interest for low-cost green supercapacitors. In this study, porous carbon foam (PCF) was prepared from waste floral foam (WFF) as an electrode material for supercapacitors. WFF was directly carbonized at various temperatures of 600, 800, and 1,000 ℃ under an inert atmosphere. The WFF-derived PCF (C-WFF) was found to have a specific surface area of 458.99 m2/g with multi-modal pore structures. The supercapacitive behavior of the prepared C-WFF was evaluated using a three-electrode system in a 6 M KOH aqueous electrolyte. As a result, the prepared C-WFF as an active material showed a high specific capacitance of 206 F/g at 1 A/g, a rate capability of 36.4 % at 20 A/g, a specific power density of 2,500 W/kg at an energy density of 2.68 Wh/kg, and a cycle stability of 99.96 % at 20 A/g after 10,000 cycles. These results indicate that the C-WFF prepared from WFF could be a promising candidate as an electrode material for high-performance green supercapacitors.