• Title/Summary/Keyword: Carbon flow

Search Result 1,401, Processing Time 0.03 seconds

Hydrogen Production from Barley Straw and Miscanthus by the Hyperthermophilic Bacterium, Cadicellulosirupter bescii

  • Minseok Cha;Jun-Ha Kim;Hyo-Jin Choi;Soo Bin Nho;Soo-Yeon Kim;Young-Lok Cha;Hyoungwoon Song;Won-Heong Lee;Sun-Ki Kim;Soo-Jung Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1384-1389
    • /
    • 2023
  • This work aimed to evaluate the feasibility of biohydrogen production from Barley Straw and Miscanthus. The primary obstacle in plant biomass decomposition is the recalcitrance of the biomass itself. Plant cell walls consist of cellulose, hemicellulose, and lignin, which make the plant robust to decomposition. However, the hyperthermophilic bacterium, Caldicellulosiruptor bescii, can efficiently utilize lignocellulosic feedstocks (Barley Straw and Miscanthus) for energy production, and C. bescii can now be metabolically engineered or isolated to produce more hydrogen and other biochemicals. In the present study, two strains, C. bescii JWCB001 (wild-type) and JWCB018 (ΔpyrFA Δldh ΔcbeI), were tested for their ability to increase hydrogen production from Barley Straw and Miscanthus. The JWCB018 resulted in a redirection of carbon and electron (carried by NADH) flow from lactate production to acetate and hydrogen production. JWCB018 produced ~54% and 63% more acetate and hydrogen from Barley Straw, respectively than its wild-type counterpart, JWCB001. Also, 25% more hydrogen from Miscanthus was obtained by the JWCB018 strain with 33% more acetate relative to JWCB001. It was supported that the engineered C. bescii, such as the JWCB018, can be a parental strain to get more hydrogen and other biochemicals from various biomass.

A Review on Paper-based Electrochemical Sensors (종이 기반 전기화학 센서의 연구 동향)

  • Minjee Seo
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • With the increasing demand for wearable sensors that are capable of point-of-care testing, paper-based sensors have been extensively studied. Paper is not only extremely cost-effective but also lightweight and flexible, and it is easy to apply conductive materials such as carbon and hydrophobic substances like wax to its surface. Moreover, the capillary action caused by cellulose fibers in paper allows the flow of liquid without help from external forces, making paper a particularly promising platform for wearable electrochemical sensors. Accordingly, paper-based sensors for detecting various analytes through electrochemical methods have been actively developed. Recently, paper-based electrochemical sensors that utilize electrochemiluminescence (ECL) or electrochromic materials for the optical read-out have been reported. This review introduces the basic fabrication methods and various application strategies of paper-based electrochemical sensors.

Mechanical and Electrical Properties of Self-sensing Grout Material with a High-Volume Ultrafine Fly Ash Replacement (초고분말 플라이 애시를 다량 치환한 자기감지형 그라우트재의 역학적 및 전기적 특성)

  • Lee, Gun-Cheol;Kim, Young-Min;Im, Geon-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.215-226
    • /
    • 2024
  • This study presents an experimental investigation into the performance of self-sensing grout formulated with a high volume of ultra-fine fly ash(UHFA). To explore the potential benefits of alternative cementitious materials, the research examined the effect of substituting UHFA with equal parts of blast furnace slag(BFS) fine powder. Both UHFA and BFS are byproducts generated in significant quantities by industrial processes. The evaluation focused on the fresh properties of the grout, including its flow characteristics, as well as the hardened properties such as compressive strength, dimensional stability(length change rate), and electrical properties. The experimental results demonstrated that incorporating UHFA resulted in a substantial reduction in the plastic viscosity of the grout, translating to improved flowability. Additionally, the compressive strength of the UHFA-modified grout surpassed that of the reference grout(without UHFA substitution) at all curing ages investigated. Interestingly, the electrical characteristics, as indicated by the relationships between FCR-stress and FCR-strain, exhibited similar trends for both grout mixtures.

Characteristics of Titanium Dioxide-Impregnated Fibrous Activated Carbon and Its Application for Odorous Pollutant (이산화티타늄 담지 섬유형 활성탄소의 특성 및 악취오염물질 제어를 위한 응용)

  • Jo, Wan-Kuen;Hwang, Eun-Song;Yang, Sung-Bong
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • The application of fibrous activated carbon (FAC)-titanium dioxide ($TiO_2$) hybrid system has not been reported yet for the control of malodorous dimethyl sulfide (DMS) at residential environmental levels. Accordingly, the current study was designed not only to characterize this hybrid system using x-ray diffraction method, particulate surface measurement and Fourier transform Infrared (FTIR) method, but also to evaluate its adsorptional photocatalytic activity (APA) for the DMS removal. The physical/surface characteristics of FAC-$TiO_2$ which was prepared in this study suggested that the hybrid material might have certain APA for DMS. The Brunauer-Emmett-Teller (BET) specific area, total pore volume, micropore volume and mesopore volume decreased all as the $TiO_2$ amounts coated on FAC increased, whereas the reverse was true for average pore diameter. $TiO_2$ coated onto FAC did not influence the adsorptional activity of FAC for the DMS input concentration of 0.5 ppm. The APA test of the hybrid material presented that the initial removal efficiencies of DMS were 93, 78, 71 and 57% for the flow rates of 0.5, 1.0, l.5 and 2.0 L/min, respectively, and they decreased somewhat 2 h after the experiment started and kept almost constant for the rest experimental period. Under this pseudo-equilibrium condition, the DMS removal efficiencies were 78, 58, 53 and 36% for the four flow rates, respectively. Meanwhile, there were no significant byproducts observed on the surfaces of the hybrid material. Consequently, this study suggests that, under the experimental conditions used in the present study, the hybrid material can be applied for DMS at residential environment levels without being interfered by any byproducts.

Evaluation of the Giggenbach Bottle Method with Artificial Fumarolic Gases (인공 분기공 가스를 이용한 Giggenbach bottle 법의 평가)

  • Lee, Sangchul;Kang, Jungchun;Yun, Sung Hyo;Jeong, Hoon Young
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.681-692
    • /
    • 2013
  • We aimed to evaluate the effectiveness of the Giggenbach bottle method and develop the related pretreatment and analytical methods using artificial fumarolic gases. The artificial fumarolic gases were generated by mixing $CO_2$, CO, $H_2S$, $SO_2$, $H_2$, and $CH_4$ gas streams with a $N_2$ stream sparged through an acidic medium containing HCl and HF, with their compositions varied by adjusting the gas flow rates. The resultant fumarolic gases were collected into an evacuated bottle partially filled with a NaOH absorption solution. While non-condensible gases such as CO, $H_2S$, and $CH_4$ accumulated in the headspace of the bottle, acidic components including $CO_2$, $SO_2$, HCl, and HF that were dissolved into the alkaline solution. Like other acidic components, $H_2S$ also dissolved into the solution, but it reacted with dissolved $Cd^{2+}$ to precipitate as CdS when $Cd(CH_3COO)_2$ was added. The non-condensible gases were analyzed on a gas chromatography. Then, CdS precipitates were separated from the alkaline solution by filtration, and they were pretreated with $H_2O_2$ to oxidize CdS-bound sulfide into sulfate. In addition, a portion of the solution was also pretreated with $H_2O_2$ to oxidize sulfite to sulfate. Following the pretreatment, the resultant samples were analyzed for $SO_4^{2-}$, $Cl^-$ and $F^-$ on an ion chromatography. In the meanwhile, dissolved $CO_2$ was analyzed on a total organic carbon-inorganic carbon analyzer without such pretreatment. According to our experimental results, the measured concentrations of the fumarolic gases were shown to be proportional to the gas flow rates, indicating that the Giggenbach bottle method is adequate for monitoring volcanic gas. The pretreatment and analytical methods employed in this study may also enhance the accuracy and reproducibility of the Giggenbach bottle method.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Detection of Potential Flow Paths of Leaked CO2 from Underground Storage Using Electrical Resistivity Survey (전기비저항탐사 방법에 의한 지중 저장 이산화탄소 누출 가능 경로 탐지)

  • Lim, Woo-Ri;Hamm, Se-Yeong;Hwang, Hak-Soo;Kim, Sung-Wook;Jeon, Hang-Tak
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.69-79
    • /
    • 2018
  • The Korean government attempts to reduce $CO_2$ emissions by 37% to 314.7 Mt $CO_2$, down from the estimated 850.6 Mt $CO_2$ until 2030 in order to confront green house effect. In this context, in 2014, Korean government launched $CO_2$ Storage Environmental Management Research (K-COSEM) Center for carrying out pilot-scale research on $CO_2$ leakage from underground $CO_2$ storage facilities. For the detection of $CO_2$ leakage, it is necessary to identify hydrologeological and geophysical characteristics of the subject area. In the study site of Naesan-ri, Daeso-myeon, Eumseong-gun, Chungbuk Province, two times injection tests (June 28-July 24, 2017 and August 07-September 11, 2017) of $CO_2$ and $SF_6$ dissolved waters, respectively, was conducted to understand the leakage behavior of $CO_2$ from underground. The injection well was drilled to a depth of 24 m with a 21-m casing and screen interval of 21~24 m depth. Two times resistivity surveys on August 18, 2017 and September 1, 2017, were conducted for revealing the flow of the injected water as well as the electrical properties of the study site. The study results have shown that the high-resistivity zone and the low-resistivity zone are clearly contrasted with each other and the flow direction of the injected water is similar to natural groundwater flow. Besides, the low resistivity zone is widely formed from the depth of injection to the shallow topsoil, indicating that the weathered zone of high permeability has high $CO_2$ leakage potential.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

Imaging Neuroreceptors in the Living Human Brain

  • Wagner Jr Henry N.;Dannals Robert F.;Frost J. James;Wong Dean F.;Ravert Hayden T.;Wilson Alan A.;Links Jonathan M.;Burns H. Donald;Kuhar Michael J.;Snyder Solomon H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.18 no.2
    • /
    • pp.17-23
    • /
    • 1984
  • For nearly a century it has been known that chemical activity accompanies mental activity, but only recently has it been possible to begin to examine its exact nature. Positron-emitting radioactive tracers have made it possible to study the chemistry of the human mind in health and disease, using chiefly cyclotron-produced radionuclides, carbon-11, fluorine-18 and oxygen-15. It is now well established that measurable increases in regional cerebral blood flow, glucose and oxygen metabolism accompany the mental functions of perception, cognition, emotion and motion. On May 25, 1983 the first imaging of a neuroreceptor in the human brain was accomplished with carbon-11 methyl spiperone, a ligand that binds preferentially to dopamine-2 receptors, 80% of which are located in the caudate nucleus and putamen. Quantitative imaging of serotonin-2, opiate, benzodiazapine and muscarinic cholinergic receptors has subsequently been accomplished. In studies of normal men and women, it has been found that dopamine and serotonin receptor activity decreases dramatically with age, such a decrease being more pronounced in men than in women and greater in the case of dopamine receptors than serotonin-2 receptors. Preliminary studies in patients with neuropsychiatric disorders suggests that dopamine-2 receptor activity is diminished in the caudate nucleus of patients with Huntington's disease. Positron tomography permits quantitative assay of picomolar quantities of neuro-receptors within the living human brain. Studies of patients with Parkinson's disease, Alzheimer's disease, depression, anxiety, schizophrenia, acute and chronic pain states and drug addiction are now in progress. The growth of any scientific field is based on a paradigm or set of ideas that the community of scientists accepts. The unifying principle of nuclear medicine is the tracer principle applied to the study of human disease. Nineteen hundred and sixty-three was a landmark year in which technetium-99m and the Anger camera combined to move the field from its latent stage into a second stage characterized by exponential growth within the framework of the paradigm. The third stage, characterized by gradually declining growth, began in 1973. Faced with competing advances, such as computed tomography and ultrasonography, proponents and participants in the field of nuclear medicine began to search for greener pastures or to pursue narrow sub-specialties. Research became characterized by refinements of existing techniques. In 1983 nuclear medicine experienced what could be a profound change. A new paradigm was born when it was demonstrated that, despite their extremely low chemical concentrations, in the picomolar range, it was possible to image and quantify the distribution of receptors in the human body. Thus, nuclear medicine was able to move beyond physiology into biochemistry and pharmacology. Fundamental to the science of pharmacology is the concept that many drugs and endogenous substances, such as neurotransmitters, react with specific macromolecules that mediate their pharmacologic actions. Such receptors are usually identified in the study of excised tissues, cells or cell membranes, or in autoradiographic studies in animals. The first imaging and quantification of a neuroreceptor in a living human being was performed on May 25, 1983 and reported in the September 23, 1983 issue of SCIENCE. The study involved the development and use of carbon-11 N-methyl spiperone (NMSP), a drug with a high affinity for dopamine receptors. Since then, studies of dopamine and serotonin receptors have been carried out in over 100 normal persons or patients with various neuropsychiatric disorders. Exactly one year later, the first imaging of opitate receptors in a living human being was performed [1].

  • PDF

Temporal Variation in the Distributions of the Benthic Heterotrophic Protozoa and Their Grazing Impacts on Benthic Bacteria and Microalgae in the Ganghwa Tidal Flat, Korea (강화도 펄 갯벌에서 저서성 원생동물 분포의 시간적 변이와 박테리아 및 미세 조류에 대한 포식압)

  • Yang, Eun-Jin;Choi, Joong-Ki;Yoo, Man-Ho;Cho, Byung-Cheol;Choi, Dong-Man
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.19-30
    • /
    • 2005
  • To investigate the seasonal distribution and grazing impacts of benthic protozoa in mud flat, their abundance, biomass and grazing rates of benthic protozoa were evaluated at interval of two or three month in Gangwha Island from April, 2002 to April, 2004. Heterotrophic flagellates and ciliates accounted for an average 98% of benthic protozoa biomass. Abundance and carbon biomass of heterotrophic flagellates ranged from $0.2{\times}10^5$ to $5.9{\times}10^5\;cells\;cm{-3}$ and from 0.02 to $9.2\;{\mu}gC\;cm^{-3}$, respectively. Biomass of heterotrophic flagellates was high in spring and fall, and showed no differences among stations. Abundance and biomass of heterotrophic flagellates decreased with the depth and were high within the surface 2.5 m sediment layer. The majority of heterotrophic flagellates were less than $10\;{\mu}m$ in length, and few euglenoid flagellates were larger than $20\;{\mu}m$. Abundance and carbon biomass of ciliates ranged from $0.1{\times}10^3$ to $17.8{\times}10^3\;cells\;cm^{-3}$ and from 0.02 to $9.1\;{\mu}gC\;cm^{-3}$, respectively, and those of ciliates were high in spring and fall. Biomass of ciliates was high within the surface 2.5 mm sediment layer and was higher at st. J2 and st. J3 than st. J1. Among the revealed benthic ciliates, the hypotrichs were the most important group in terms of abundance and biomass. During the sampling periods, an average 66% of benthic protozoa biomass was covered by ciliates. The seasonal distribution of benthic protozoa showed an almost similar fluctuation pattern to that of chlorophyll-a. The results suggest that the biomass of benthic protozoa were mainly controlled by prey abundance, for example, diatoms. Based on ingestion rates, benthic protozoa removed from 13.4 to 40.7% of bacterial production and from 20.1 to 36.4% of primary production. Ingestion rates of benthic protozoa on bacteria and microphytobenthos were high in April. Benthic protozoa in this study area may play a pivotal role in the carbon flow of the benthic microbial food web during spring.