• Title/Summary/Keyword: Carbon film

Search Result 1,330, Processing Time 0.03 seconds

Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices (유연전자소자를 위한 차세대 유연 투명전극의 개발 동향)

  • Kim, Joo-Hyun;Chon, Min-Woo;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • Flexible transparent conductive electrodes (TCEs) have recently attracted a great deal of attention owing to rapid advances in flexible electronic devices, such as flexible displays, flexible photovoltanics, and e-papers. As the performance and reliability of flexible electronics are critically affected by the quality of TCE films, it is imperative to develop TCE films with low resistivity and high transparency as well as high flexibility. Indium tin oxide (ITO) has been the most dominant transparent conducting material due to its high optical transparency and electrical conductivity. However, ITO is susceptible to cracking and delamination when it is bent or deformed. Therefore, various types of flexible TCEs, such as carbon nanotube, conducting polymers, graphene, metal mesh, Ag nanowires (NWs), and metal mesh have been extensively investigated. Among several options to replace ITO film, Ag NWs and metal mesh have been suggested as the promising candidate for flexible TCEs. In this paper, we focused on Ag NWs and metal mesh, and summarized the current development status of Ag NWs and metal mesh. The several critical issues such as high contact resistance and haze are discussed, and newly developed technologies to resolve these issues are also presented. In particular, the flexibility and durability of Ag NWs and metal mesh was compared with ITO electrode.

Thickness Evaluation of Pipeline Using Density Profile on a Radiograph (방사선투과필름에서 Density Profile을 이용한 배관의 두께 평가)

  • Lee, Sung-Sik;Jang, Byoung-Gyu;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.483-489
    • /
    • 2002
  • The computer simulation has been done for non-insulated and insulated pipes which are vacant or half filled with liquid. The simulation results showed that the density profile on the radiography is continuous and symmetrical around the center of pipe in the case of vacant pipe. On the other hand the density profiles are not symmetrical and depend on geometrical setting for radiography in the case of half filled pipes. Finally, experimental testing on a non-insulated carbon steel pipe with artificial notches of different depth is carried out using Ir-192 and industrial film. Comparing the measured density profile on the radiograph to the calculated one, it has been shown that it is possible to evaluate thickness variation by measuring density profile on a radiograph.

$NO_2$ gas sensing properties of $SnO_2$ thin films dopped with Pd and CNT (Pd 및 CNT 첨가에 따른 $SnO_2$ 박막의 이산화질소 감지특성)

  • Kim, H.K.;Lee, R.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.101-106
    • /
    • 2008
  • The $SnO_2$ thin films doped with Pd and CNT as $NO_2$ gas sensor were prepared by spin coating and then the $NO_2$ gas response of these films were evaluated under $1ppm{\sim}5ppm\;NO_2$ concentration and operating temperature of $200^{\circ}C$. It was found that the sensor resistance was increased with $NO_2$ exposure and $NO_2$ concentration. The 3wt% Pd doped sample showed a sensitivity of 26.5 which was 10 times higher than that of pure $SnO_2$. And also the sensitivity of CNT doped sample increased with CNT content and it had 72 when 0.225 wt% of CNT was added under 5ppm $NO_2$ concentration.

  • PDF

Decrease of Interface Trap Density of Deposited Tunneling Layer Using CO2 Gas and Characteristics of Non-volatile Memory for Low Power Consumption (CO2가스를 이용하여 증착된 터널층의 계면포획밀도의 감소와 이를 적용한 저전력비휘발성 메모리 특성)

  • Lee, Sojin;Jang, Kyungsoo;Nguyen, Cam Phu Thi;Kim, Taeyong;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.394-399
    • /
    • 2016
  • The silicon dioxide ($SiO_2$) was deposited using various gas as oxygen and nitrous oxide ($N_2O$) in nowadays. In order to improve electrical characteristics and the interface state density ($D_{it}$) in low temperature, It was deposited with carbon dioxide ($CO_2$) and silane ($SiH_4$) gas by inductively coupled plasma chemical vapor deposition (ICP-CVD). Each $D_{it}$ of $SiO_2$ using $CO_2$ and $N_2O$ gas was $1.30{\times}10^{10}cm^{-2}{\cdot}eV^{-1}$ and $3.31{\times}10^{10}cm^{-2}{\cdot}eV^{-1}$. It showed $SiO_2$ using $CO_2$ gas was about 2.55 times better than $N_2O$ gas. After 10 years when the thin film was applied to metal/insulator/semiconductor(MIS)-nonvolatile memory(NVM), MIS NVM using $SiO_2$($CO_2$) on tunneling layer had window memory of 2.16 V with 60% retention at bias voltage from +16 V to -19 V. However, MIS NVM applied $SiO_2$($N_2O$) to tunneling layer had 2.48 V with 61% retention at bias voltage from +20 V to -24 V. The results show $SiO_2$ using $CO_2$ decrease the $D_{it}$ and it improves the operating voltage.

Synthesis of TiO2 Nanowires by Metallorganic Chemical Vapor Deposition (유기금속 화학기상증착법을 이용한 TiO2 나노선 제조)

  • Heo, Hun-Hoe;Nguyen, Thi Quynh Hoa;Lim, Jae-Kyun;Kim, Gil-Moo;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.686-690
    • /
    • 2010
  • $TiO_2$ nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The $TiO_2$ nanowires were grown at a high density on Si(100) at $510^{\circ}C$, which is near the complete decomposition temperature ($527^{\circ}C$) of the Ti precursor $(Ti(O-iPr)_2(dpm)_2)$. At $470^{\circ}C$, only very thin (< $0.1{\mu}m$) $TiO_2$ film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to $550^{\circ}C$ and $670^{\circ}C$, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The $TiO_2$ nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The $TiO_2$ nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow $TiO_2$ nanowires, which hold significant promise for various photocatalysis and solar cell applications.

Study on the IPMC electrical characteristic change For the utilization of Ocean Current Energy (해양 에너지 활용을 위한 IPMC의 전기적 특성 변화 연구)

  • Son, Kyung Min;Kim, Min;Kim, Gwan-Hyung;Kim, Hyun-jo;Byun, Gi-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.531-533
    • /
    • 2013
  • In this paper, to study the IPMC (Ionic exchange Polymer Metal Composite) material consisting of a sulfonic acid ion and fluoride combination of carbon with Nafion film greatly affected the electro-active polymer (Electro Active Polymer) characteristics and the presence of water and cationshave properties. Use or electrical energy into mechanical energy, mechanical energy, electrical energy, and can be utilized to its characteristics, depending on the water and cations in water varies greatly. Configure the device simulations in order to study the electrical properties of these IPMC. Stepper Motor using MCU and simulator designed for the electrical characterization due to the movement and to the implementation of the mechanical movement of ocean currents. In this study, configuration the IPMC and simulation device to the area of the IPMC to the efficient use of energy currents, frequency, salinity concentration, through the efficient use of the IPMC due to the bend angle of the electrical analysis and research methods we propose.

  • PDF

Redox Properties of Modified Poly-N,N'-bis(2-pyrrol-1-yl-propyl)-4,4'-Bipyridine Film Electrode (수식된 N,N'-bis(2-pyrrol-1-yl-propyl)-4,4'-bipyridine 고분자 피막전극의 산화-환원 특성)

  • Cha, Seong Keuck
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.429-435
    • /
    • 2001
  • The monomer N,N'-bis(2-pyrrol-1-yl-propyl)-4,4'-bipyridine(bpb) was electrochemically polymerized on the glassy carbon electrode surface, which was modified with 1:1 ratio of erichrome black T(EBT) and glutathione(GSSG) to give a type of GC/poly-bpb, EBT, GSSG electrode for depositing Zn(II). The diffusion coefficients of the incorporated ions were 2.43${\times}10^{-15}$ and 9.14${\times}10^{-15} cm^2s^{-1}$ before taking Zn(II) ions and after them respectively. The modified electrodes are stable at the electrode process. The polymerized poly-bpb of 2.83${\times}10^4gmol^{-1}$ can deposit 2.15${\times}10^4gmol^{-1}$ of Zn(II). The number of pumping ions involving in the redox procedure at 0.77 V was 81.7% of the captured 180 ions into the polymer matrix, which was 3 times larger than that of the electrode modified with EBT alone.

  • PDF

MWCNT thin film based supercapictor using spray deposition and gel electrolytes

  • Han, Song-Yi;Park, Sung-Hwak;Kim, Sung-Hyun;Kim, Sun-Min;Han, Joung-Hoon;Bae, Joon-Ho;Lee, Churl-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.465-465
    • /
    • 2011
  • In recent years, electrochemical supercapacitors have attracted much attention due to their high power density, long life cycles, and high efficiency. Some supercapacitors using CNTs have been reported, but there are several issues to be resolved for further development of CNT based supercapacitors. One issue is time consuming procedures to prepare CNT films, which may provide poor control of CNT uniformity over the large area of the substrates. Another is new electrolytes replacing the conventional liquid electrolytes in supercapacitors. In this work, We have successfully demonstrated that spray deposition method of multiwalled CNT films using gel electroytes could be promising for CNT-based supercapacitors on ITO substrates. Specific capacitances using gel electrolyte reached up to 1.5 F/g and 9 mF/$cm^2$, and internal resistance was 28 ${\Omega}$. Specific capacitances and internal resistance of supercapacitors with gel electrolyte were better than or comparable to those with liquid electrolytes($KNO_3$, $Na_2SO_4$), indicating that gel electrolytes could replace liquid counterparts in CNT-based supercapacitors. Combined with gel electrolyte, spray deposition method could provide low cost and easily scalable process for high performance supercapacitors using CNT films on ITO for applications in display devices.

  • PDF

Reduced Graphene Oxide Field-effect Transistor as a Transducer for Ion Sensing Application

  • Nguyen, T.N.T.;Tien, Nguyen Thanh;Trung, Tran Quang;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.562-562
    • /
    • 2012
  • Recently, graphene and graphene-based materials such as graphene oxide (GO) or reduced graphene oxide (R-GO) draws a great attention for electronic devices due to their structures of one atomic layer of carbon hexagon that have excellent mechanical, electrical, thermal, optical properties and very high specific surface area that can be high potential for chemical functionalization. R-GO is a promising candidate because it can be prepared with low-cost from solution process by chemical oxidation and exfoliation using strong acids and oxidants to produce graphene oxide (GO) and its subsequent reduction. R-GO has been used as semiconductor or conductor materials as well as sensing layer for bio-molecules or ions. In this work, reduced graphene oxide field-effect transistor (R-GO FET) has been fabricated with ITO extended gate structure that has sensing area on ITO extended gate part. R-GO FET device was encapsulated by tetratetracontane (TTC) layer using thermal evaporation. A thermal annealing process was carried out at $140^{\circ}C$ for 4 hours in the same thermal vacuum chamber to remove defects in R-GO film before deposition of TTC at $50^{\circ}C$ with thickness of 200 nm. As a result of this process, R-GO FET device has a very high stability and durability for months to serve as a transducer for sensing applications.

  • PDF

Tensile properties and Spot Weldability of Trip High Strength Steel Sheet (Trip형 고장력강판의 인장성질 및 점용접성)

  • Kang, C.Y.;Kim, H.J.;Kim, C.G.;Lee, B.W.;Lee, M.Y.;Lee, G.H.;Kim, T.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.295-304
    • /
    • 1998
  • The effects of retained austenite and carbon content in the retained austenite on the tensile strength-elongation balance and spot weldability of TRIP high strength steel sheet have been investigated. The retained austenite of granular type increased with increasing intercritical annealing and austempering temperature, and film type was increased with the increase of austempering time. The volume fraction of retained austenite increased with decreasing intereritical annealing temperature, and the maximum value was obtained at austempering temperature of $400^{\circ}C$. The values of tensile strength-elongation balance increased with decreasing intercritical annealing temperature and maximum value was obtained at austempering temperature of $400^{\circ}C$. The maximum value of tensile strength-elongation balance was obtained at a retained austenite content of about 12%. Tensile shear strength of the specimens with retained austenite was higher than that of the normalizing specimens. With increasing welding current and time, the tensile shear strengh and nugget diameter increased, while nugget thickness showed the peak value and then decreased. The optimum range of welding condition at the given welding pressure of 350kgf was 7~11kA and 10~15 cycles.

  • PDF