• Title/Summary/Keyword: Carbon film

Search Result 1,330, Processing Time 0.029 seconds

Recent Progress in Qantum Dots Containing Thin Film Composite Membrane for Water Purification (양자점이 합체된 복합 박막을 이용한 정수의 최근 발전)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.293-306
    • /
    • 2020
  • Increasing harmful effects of climate change, such as its effect on water scarcity, has led to a focus on developing effective water purification methods to obtain pure water. Additionally, rising levels of water pollution is increasing levels of environmental degradation, calling for sources of water treatment to remove contaminants. To purify water, osmotic processes across a semipermeable membrane can take place, and recent studies are showing that incorporating nanoparticles, including carbon quantum dots (CQDs), graphene carbon dots (GQDs), and graphene oxide quantum dots (GOQDs) are making thin film composite (TFC) membranes more effective by increasing water flux while maintaining similar levels of salt rejection, increasing the hydrophilicity of the membrane surface, showing bactericidal properties, exhibiting antifouling properties to prevent accumulation of bacteria or other microorganisms from reducing the effectiveness of the membrane, and more. In the review, the synthesis process, applications, functionality, properties, and the role of several types of quantum dots are discussed in the composite membrane for water purification.

Contact Angle and Electrical Properties in the Carbon Centered System (탄소를 포함한 절연박막의 접촉각 및 전기적인 특성)

  • Oh, Teresa;Kim, Jong-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.117-121
    • /
    • 2008
  • The SiOC film of carbon centered system was prepared using bistrimethylsilylmethane and oxygen mixed precursor by the chemical vapor deposition. The chemical properties of the SiOC film were analyzed by the I-V measurement and FTIR spectra analysis. The main bond of $950{\sim}1200cm^{-1}$ was composed of the Si-C, Si-O-C and Si-O bonds. The leakage current of the SiOC film increased with the increasing of the carbon content, and the drift of the current was in proportion to the Si-O-C bond content. The deconvoluted data of FTIR spectra could be classified the three types such as organic, hybrid and inorganic types, and the contact angle showed the difference of three types.

Effects of Oxygen on Preparation of TiO2 Thin Films by MOCVD (MOCVD법에 의한 TiO2 박막의 제조에 미치는 산소의 영향)

  • Yu, Seong-Uk;Park, Byeong-Ok;Jo, Sang-Hui
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.111-117
    • /
    • 1995
  • TiO2 thin films were prepared on a (100)silicon wafer using a chemical vapor deposition(CVD) method. The deposition experiments were performed using the TTIP in the deposition temperature ransing from 200 content. The deposition rate of TiO2 was increased with the substrate temperature and the oxygen content. The thickness of the deposited thin film and the compositional analysis of this thin films with theoxygen content were measured using Ellipsometry, SEM and ESCA, respectively. The deposited thin film was composed of a bilayer, external TiO2 and internal Ti. Carbon as a residual impurity was found to remain when zero sccm O2 was purged into a reaction chamber and the composition of the deposited thin film was found to change Ti into TiO in a deeper layer. However, when 600sccm O2 was supplied to a reaction chamber, it has been found to reside less carbon content than without O2. Finally, in the condition of 1200sccm O2, no impurity level of carbon was observed and a deeper layer consisted of the Ti composite, even though the deposited surface was composed of TiO2.

  • PDF

Organic Compounds Vapor Detection Properties of MWCNT/PMMA Composite Film Detector (CNT/PMMA 복합막 검출기의 유기화합물 증기의 검출 특성)

  • Lim, Young Taek;Shin, Paik-Kyun;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.727-730
    • /
    • 2015
  • In this paper, we fabricated organic compounds detector using the MWCNT/PMMA (multi-walled carbon nanotube / polymethylmethacrylate) composite film. We used polymer film as a matrix material for the device framework, and introduced CNTs for reacting with the organic compounds resulting in changing electrical conductivity. Spray coating method was used to form the MWCNT/PMMA composite film detector, and pattern formation of the detector was done by shadow mask during the spray coating process. We investigated changes of electrical conductivity of the detector before and after the organic compounds exposure. Electrical conductivity of the detector tended to decrease after the exposure with various organic compounds such as acetone, tetrahydrofuran (THF), toluene, and dimethylformamide (DMF). Finally we conclude that organic compounds detection by the MWCNT/PMMA composite film detector was possible, and expect the feasibility of commercial MWCNT/PMMA composite film detector for various organic compounds.

Liquid Crystal orientation on the NDLC Thin Film Deposited using physical deposition method (PVD방식을 이용한 NDLC 박막에서의 액정 배향 효과)

  • Lee, Won-Kyu;Oh, Byoung-Yun;Lim, Ji-Hun;Na, Hyun-Jae;Lee, Kang-Min;Park, Hong-Gyu;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.301-301
    • /
    • 2008
  • Ion beam (IB)-induced alignment of inorganic materials has been investigated intensively as it provides controllability in a nonstop process for producing high-resolution displays[1][2]. LC orientation via ion-beam (IB) irradiation on the nitrogen doped diamond like carbon (NDLC) thin film deposited by physical deposition method-sputtering was embodied. The NDLC thin film that was deposited by sputter showed uniform LC alignment at the 1200eV of the ion beam intensity. The pretilt angle of LC on NDLC thin films was measured with various IB exposure time and angle. The maximum pretilt angle were showed with IB irradiation angle of $45^{\circ}$ and exposure time of 62.5 sec, respectively. To show NDLC thin film stability in high temperature, thermal stability test was proceeded. The uppermost of the thermal stability of NDLC thin film was $200^{\circ}C$. In this investigation, the electro-optical (EO) characteristics of LC on NDLC thin film were measured.

  • PDF

Emission Properties from Induced Structural Degradation of a-C:H Thin Film

  • Yoo, Young-Zo;Song, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.89-92
    • /
    • 2011
  • Hydrogenated amorphous carbon (a-C:H) films were deposited by plasma enhanced chemical vapor deposition on silicon substrates. a-C:H thin film was irradiated to a typical He-Cd laser to study its emitting properties. The photoluminescence (PL) intensity during the irradiation achieved a maximum value when 2,000 seconds elapsed. Fourier transform infrared measurement revealed a-C:H thin film suffered transformation from a polymer-like to graphite-like phase during laser irradiation. Thermal annealing was done at various temperatures, ranging from room temperature to $400^{\circ}C$ in the atmosphere, to investigate structural changes in a-C:H film by heat generation during the emission. PL intensity of a-C:H thin film increased 1.5 times without apparent structural change, as annealing temperature increased up to $200^{\circ}C$. However, a-C:H film above $200^{\circ}C$ exhibited significant decrease of PL accompanying dehydrogenation. This led to a red shift of the PL peak.

MOCVD of GaN Films on Si Substrates Using a New Single Precursor

  • Song, Seon-Mi;Lee, Sun-Sook;Yu, Seung-Ho;Chung, Taek-Mo;Kim, Chang-Gyoun;Lee, Soon-Bo;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.953-956
    • /
    • 2003
  • Hexagonal GaN (h-GaN) films have been grown on Si(111) substrates by metal organic chemical vapor deposition using the azidodiethylgallium methylamine adduct, Et₂Ga(N₃)·NH₂Me, as a new single precursor. Deposition was carried out in the substrate temperature range 385-650 °C. The GaN films obtained were stoichiometric and did not contain any appreciable amounts of carbon impurities. It was also found that the GaN films deposited on Si(111) had the [0001] preferred orientation. The photoluminescence spectrum of a GaN film showed a band edge emission peak characteristic of h-GaN at 378 nm.

Effect of carbonization temperature of AC/C composite electrode on electro double layer capacitor (탄화온도가 상이한 활성탄소 복합제 전극이 전기이중층 케페시터의 층방전 특성에 미치는 영향)

  • Jo, Young-Keun;Jung, Doo-Hwan;Kim, Chang-Soo;Park, So-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1821-1823
    • /
    • 1999
  • Carbon is an attractive material on electro double capacitor which depend on charge storage in the electrode/electrolyte interfacial double layer. Carbonaceous material for double layer capacitor can be obtained from carbon powder, fiber, film and porous carbon sheet. The capacitance of electrodes using an activated carbon was influenced by a filling density of the carbon, thickness and internal resistance of the electrode. In this study. to reduce internal resistance and increase electric conductivity of the electrode. activated carbon/carbon(AC/C) composite electrode was fabricated. The capacitors which have energy densities of 68F/g(at $30^{\circ}C$), 109F/g(at $60^{\circ}C$) and $68F/cm^3$(at $30^{\circ}C$), $111F/cm^3$(at $60^{\circ}C$) were fabricated by using AC/C composite electrodes.

  • PDF

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.

Selective Growth of Freestanding Carbon Nanotubes Using Plasma-Enhanced Chemical Vapor Deposition (플라즈마 기상 화학 증착법을 이용한 탄소나노튜브의 선택적 수직성장 기술)

  • Bang, Yun-Young;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.113-120
    • /
    • 2007
  • Chemical vapor deposition (CVD) is one of the various synthesis methods that have been employed for carbon nanotube (CNT) growth. In particular, Ren et al reported that large areas of vertically aligned multi-wall carbon nanotubes could be grown using a direct current (dc) PECVD system. The synthesis of CNT requires a metal catalyst layer, etchant gas, and a carbon source. In this work, the substrates consists of Si wafers with Ni-deposited film. Ammonia $NH_3$) and acetylene ($C_2H_2$) were used as the etchant gases and carbon source, respectively. Pretreated conditions had an influence on vertical growth and density of CNTs. And patterned growth of CNTs could be achieved by lithographical defining the Ni catalyst prior to growth. The length of single CNT was increased as niclel dot size increased, but the growth rate was reduced when nickel dot size was more than 200 nm due to the synthesis of several CNTs on single Ni dot. The morphology of the carbon nanotubes by TEM showed that vertical CNTs were multi-wall and tip-type growth mode structure in which a Ni cap was at the end of the CNT.