Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.11.727

Organic Compounds Vapor Detection Properties of MWCNT/PMMA Composite Film Detector  

Lim, Young Taek (School of Electrical Engineering, Inha University)
Shin, Paik-Kyun (School of Electrical Engineering, Inha University)
Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.11, 2015 , pp. 727-730 More about this Journal
Abstract
In this paper, we fabricated organic compounds detector using the MWCNT/PMMA (multi-walled carbon nanotube / polymethylmethacrylate) composite film. We used polymer film as a matrix material for the device framework, and introduced CNTs for reacting with the organic compounds resulting in changing electrical conductivity. Spray coating method was used to form the MWCNT/PMMA composite film detector, and pattern formation of the detector was done by shadow mask during the spray coating process. We investigated changes of electrical conductivity of the detector before and after the organic compounds exposure. Electrical conductivity of the detector tended to decrease after the exposure with various organic compounds such as acetone, tetrahydrofuran (THF), toluene, and dimethylformamide (DMF). Finally we conclude that organic compounds detection by the MWCNT/PMMA composite film detector was possible, and expect the feasibility of commercial MWCNT/PMMA composite film detector for various organic compounds.
Keywords
Organic compounds detection; MWCNT/PMMA composite film detector; Spray coating; Change of electrical conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. K. Yoo, J. C. Park, and E. G. Lee, Architecture Institute of Korea, 21, 141 (2015).
2 R. F. Hejazi, T. Husain, and F. I. Khan, J. of Hazard. Mater., B99, 287 (2003). [DOI: http://dx.doi.org/10.1016/S0304-3894(03)00062-1]   DOI
3 J. L. Domingo and M. Nadal, Environ. Int., 35, 382 (2009). [DOI: http://dx.doi.org/10.1016/j.envint.2008.07.004]   DOI   ScienceOn
4 C. Ge, C. Xie, and S. Cai, Mat. Sci. Eng. B-Solid, 137, 53 (2007). [DOI: http://dx.doi.org/10.1016/j.mseb.2006.10.006]   DOI   ScienceOn
5 G. G. Huang, C. T. Wang, H. T. Tang, Y. S. Huang, and J. Yang, Anal. Chem., 78, 2397 (2006). [DOI: http://dx.doi.org/10.1021/ac051930+]   DOI
6 K. Kanda and T. Maekawa, Sensor. Actuat. B-Chem., 108, 97 (2005). [DOI: http://dx.doi.org/10.1016/j.snb.2005.01.038]   DOI
7 C. Dekker, Phys. Today, 5, 22 (1999).
8 D. Janas, A. P. Herman, S. Boncel, and K.K.K. Koziol, Carbon, 73, 225 (2014). [DOI: http://dx.doi.org/10.1016/j.carbon.2014.02.058]   DOI
9 S. Peng, K. Cho, P. Qi, and H. Dai, Chem. Phys. Lett., 387, 271 (2004). [DOI: http://dx.doi.org/10.1016/j.cplett.2004.02.026]   DOI
10 A. Allaoui, S. Bai, H. M. Cheng, and J. B. Bai, Compos. Sci. Technol., 62, 1993 (2002). [DOI: http://dx.doi.org/10.1016/S0266-3538(02)00129-X]   DOI
11 H. H. So, J. W. Cho, and N. G. Sahoo, Eur. Polym. J., 43, 3750 (2007). [DOI: http://dx.doi.org/10.1016/j.eurpolymj.2007.06.025]   DOI
12 L. Valentini, J. Biagiotti, J. M. Kenny, and S. Santucci, Compos. Sci. Technol., 63, 1149 (2003). [DOI: http://dx.doi.org/10.1016/S0266-3538(03)00036-8]   DOI
13 H. W. Goh, S. H. Goh, G. Q. Xu, K. P. Pramoda, and W. D. Zhang, Chem. Phys. Lett., 373, 277 (2003). [DOI: http://dx.doi.org/10.1016/S0009-2614(03)00621-3]   DOI
14 X. D. Zhou, S. C. Zhang, W. Huebner, and P. D. Ownby, J. Mater Sci., 36, 3759 (2001). [DOI: http://dx.doi.org/10.1023/A:1017982018651]   DOI
15 P. C. Ma, B. Z. Tang, and J. K. Kim, Carbon, 46, 1497 (2008). [DOI: http://dx.doi.org/10.1016/j.carbon.2008.06.048]   DOI
16 B. Hu1, N. Hu, Y. Li, K. Akagi, W. Yuan, T. Watanabe, and Y. Cai, Nanoscale Res. Lett., 7, 402 (2012). [DOI: http://dx.doi.org/10.1186/1556-276X-7-402]   DOI
17 K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, and Y. H. Lee, J. Electrochem. Soc., 149, A1058 (2002). [DOI: http://dx.doi.org/10.1149/1.1491235]   DOI