• Title/Summary/Keyword: Carbon film

Search Result 1,327, Processing Time 0.029 seconds

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

Effects of Hydrogen Gas on the Optical Properties of Diamondlike Carbon Thin Films Prepared by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학증법에 의해 형성된 Diamondlike Carbon 박막의 광학적 특성에 미치는 수소가스의 영향)

  • Kim, Han-Do;Ju, Seung-Gi
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.152-158
    • /
    • 1994
  • Diamondlike carbon thin film have been fabricated using methane as a reactive gas by plasma enhanced chemical vapor deposition. Effects of hydrogen gas on the optical properties of the thin film has been investigated. When the hydrogen was used as a secondary gas, the role of hydrogen changed with deposition power unlike inert gases such as Ar and He. From the changes of optical band gap and FT-IR analysis, it was predicted that the chemical etching, sputtering of C-H bond by hydrogen and the implantation of hydrogen into the thin film could occur. The validity of the possibilities was confirmed by examining the effect of secondary gases such as Ar and He.

  • PDF

Electrochemical Determination of Dopamine Based on Carbon Nanotube-Sol-Gel Titania-Nafion Composite Film Modified Electrode

  • Park, Ji-Ae;Kim, Byung-Kun;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3123-3127
    • /
    • 2010
  • A highly sensitive electrochemical detection method for dopamine (DA) has been developed by relying on a multiwalled carbon nanotube (CNT)-sol-gel titania-Nafion composite film modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards DA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric and amperometric responses for DA compared to those obtained with both titania-Nafion/GC and Nafion/GC electrodes. The CNT-titania-Nafion/GC electrode gave a linear response ($R^2$ = 0.999) for DA from $0.5\;{\mu}M$ to 0.5 mM with a detection limit (S/N = 3) of $0.1\;{\mu}M$ and a good sensitivity of 150 mA/M while other electrodes such as CNT-Nafion/GC, titania-Nafion/GC, and a bare GC gave a sensitivity of 89, 39, and 36 mA/M, respectively. Besides, the CNT-titania-Nafion/GC electrode displayed very fast response time within 2 s. The modified electrode showed good selectivity against ascorbic acid. The modified electrode showed good stability and reproducibility. The CNT-titania-Nafion/GC electrode was applied to the determination of DA in urine and serum samples.

The deposition characteristics of the diamond films deposited on Si, Inconel 600 and steel by microwave plasma CVD method (마이크로파 플라즈마 CVD 방법으로 Si, Inconel 600 및 Steel 모재위에 증착된 다이아몬드 박막의 증착특성)

  • 김현호;김흥회;이원종
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.133-141
    • /
    • 1995
  • The deposition characteristics of diamond films were investigated for three different substrates : Si, Inconel 600 and steel. Diamond films were prepared by microwave plasma CVD method using $CH_4$, $H_2$ and $O_2$ as reaction gases. The deposited films were analyzed with SEM, Raman spectroscopy and ellipsometer. For Si substrate, diamond films were successfully obtained for most of the deposition conditions used in this study. As the $CH_4$ flow rate decreased and the $O_2$ flow rate increased, the quality of the film was improved due to the reduced non-diamond phase in the film. For Inconel 600 substrate, the surface pretreatment with diamond powders was required to deposit a continuous diamond film. The films deposited at temperatures of $600^{\circ}C$ and $700^{\circ}C$ had mainly diamond phase, but they were peeled off locally due to the difference in the thermal expansion coefficient between the substrate and the deposited films. The films deposited at $500^{\circ}C$ and $850^{\circ}C$ had only the graphitic carbon phase. For steel substrate, all of the films deposited had only the graphitie carbon phase. We speculated that the formation of diamond nuclei on the steel substrate was inhibited due to the diffusion of carbon atoms into the steel substrate which has a large amount of carbon solubility.

  • PDF

Carbon Nanotube Heater Generating High Heat Flux

  • Kang, Yong-Pil;Lee, Hyun-Chang;Kim, Duck-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.530-530
    • /
    • 2012
  • Many practical applications of carbon nanotubes(CNTs) have been proposed and there have been attempts to utilize CNT films as transparent electrodes for solar cells and displays. Our group has considered the use of the CNT film as a thin film heater (TFH) and proposed it for the first time and reported the thermal behavior of the TFH made of single walled CNTs. However, due to the relatively high electrical resistance of the CNT film, using the TFH in application areas requiring high heat flux has been a difficult problem. To overcome this obstacle, we adopted a 'branch electrodes' concept to increase the film conductance dramatically. If two branch electrodes are inserted into a TFH whose original electrical resistance is R, the total resistance will be reduced to R/9. Because of the increased aspect ratio, the resistance of each segmented TFH will be reduced to R/3. Furthermore, since they are connected in parallel, the total resistance reduces to R/9. This could be extended to n branch electrodes, and the total resistance of the film will be reduced to R/(n+1)2, if the resistance of electrodes are negligibly small. We fabricated the heaters with different number of branch electrodes. The number of branch electrodes of the fabricated heaters are 0, 2, 4, 8 and their electrical resistance are 101.4, 39.5, 20.0, $15.4{\Omega}$, respectively. We applied 20V to each heater and monitored the temperature variations. We could achieve high heating temperature even with low voltage supply. This technique could be applied to relevant industrial applications which need high power film heater.

  • PDF

Preparation of Honeycomb-patterned Polyaniline-MWCNT/Polystyrene Composite Film and Studies on DC Conductivity

  • Kim, Won-Jung;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2345-2351
    • /
    • 2012
  • Conductive honeycomb-patterned polystyrene (PS) thin films were prepared by the formation of a polyaniline (PANI) thin layer on the surface of the patterned PS thin films using simple one-step chemical oxidative polymerization of aniline. The in situ chemical oxidation polymerization of aniline hydrochloride solution on the patterned structure of the PS films was conducted in the presence of multiwalled carbon nanotubes (MWCNT) to prepare the PANI-MWCNT/PS composite film. The concentration (wt %) of MWCNT was varied in the range of 1%-3% by weight. The dependence of surface morphology of the PANI/PS and PANI-MWCNT/PS composite film to the polymerization time was observed by scanning electron microscopy. The room temperature DC conductivity was obtained by the four-probe technique. The conductivity of the PANI-MWCNT/PS composite film was affected both by the MWCNT concentration and polymerization time. In addition, DC electrical field was loaded during the oxidative polymerization to affect the distribution of the MWCNT included in the composite film, varying the loading voltage in the range of 0.1-3.0 V. The conductivity of the PANI-MWCNT/PS composite film was increased as loading voltage rose. However, this increase stops at a voltage higher than the critical value.

Studies on the Anodic Oxidation Behavior of Methanol and L-Ascorbic Acid by Using Glassy Carbon Electrodes Modified with Inorganic-Metal Polymeric Films (무기 금속 고분자 막을 도포시킨 유리질 탄소전극을 이용한 메탄올과 L-ascorbic acid의 양극 산화 거동에 관한 연구)

  • Yoo, Kwang-Sik;Woo, Sang-Beom
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.347-352
    • /
    • 1998
  • A study was carried out on the elelctrochemical characteristics of chemically modified electrodes (CMEs) by cyclic voltammetry. Fabrication of CMEs was made by coating with mixed valence (mv) inorganic-metal polymeric films on the glassy carbon electrode surface by potential cycling. Anodic oxidation behavior of methanol and L-ascorbic acid was studied by using CMEs working electrode. Deposition of films such as mv ruthenium oxo/ruthenium cyanide film (mv Ru-O/CN-Ru), mv ruthenium oxo/ferrocyanide film (mv Ru-O/$Fe(CN)_6$), and mv ruthenium oxo/ruthenium cyanide/Rhodium film (mv Ru-O/CN-Ru/Rh) was obtained to coat by scan rate of 50 mV/sec within the specified potential range (-0.5V ~ +1.2V). Film thickness was controlled by the repeat of the potential cycling. Anodic oxidation behavior of methanol was as follow. Calibration graph by using mv Ru-O/CN-Ru film showed linearly from 10 mM to 80 mM MeOH with slope factor of $-7.552{\mu}A/cm^2$. Although slope factor by using mv Ru-O/$Fe(CN)_6$ film was $-5.13{\mu}A/cm^2$, yet linear range of calibration graph could be extended from 10 mM to 100 mM MeOH. Anodic oxidation behavior of L-ascorbic acid was studied by mv Ru-O/CN-Ru film on the glassy carbon electrode and the glassy carbon electrode with Rh film, Glassy carbon electrode modified with Ru polymeric film was showed better sensitivity than the Rh-glassy carbon modified electrode (mv Ru-O/CN-Ru/Rh). Calibration graph was linear from 0.1 mM to 5 mM L-ascorbic acid by using glassy carbon electrode modified with Ru polymeric film. Solpe factor and relative coefficient are $-84.78{\mu}A/mM$ and 0.998, respectively.

  • PDF

Transparent Conductive Single-Walled Carbon Nanotube Films Manufactured by adding carbon nanoparticles

  • Lee, Seung-Ho;Kim, Myoung-Soo;Goak, Jung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.417-417
    • /
    • 2009
  • Although a transparent conductive film (TCF) belongs to essential supporting materials for many device applications such as touch screens, flat panel displays, and sensors, a conventional transparent conductive material, indium-tin oxide (ITO), suffers from considerable drawback because the price of indium has soared since 2001. Despite a recent falloff, a demand of ITO is expected to increase sharply in the future due to the trend of flat panel display technologies toward flexible, paper-like features. There have been recently extensive studies to replace ITO with new materials, in particular, carbon nanotubes (CNTs) since CNTs possess excellent properties such as flexibility, electrical conductivity, optical transparency, mechanical strength, etc., which are prerequisite to TCFs. This study fabricated TCFs with single-walled carbon nanotubes (SWCNTs) produced by arc discharge. The SWCNTs were dispersed in water with a surfactant of sodium dodecyl benzene sulfonate (NaDDBS) under sonication. Carbon black and fullerene nanoparticles were added to the SWCNT-dispersed solution to enhance contact resistance between CNTs. TCFs were manufactured by a filtration and transfer method. TCFs added with carbon black and fullerene nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy (optical transmittance), and four-point probe measurement (sheet resistance).

  • PDF

Augmentation of Freshness keeping of Fresh Produce Using a Functional Packaging Film (기능성 포장필름의 농산물 신선도 유지기능 증대)

  • 박찬영;김광섭;은종방
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 1999.04a
    • /
    • pp.11-22
    • /
    • 1999
  • The functional packaging film, that keeps the freshness of the fresh produce, has composed of the ferro fluid particles, chitin and chitosan. The film exhibited selectivity in permeability for carbon dioxide and ethylene gases. Antagonistic effect of the film for Fusarium, Botrysphania, Altanaria and E. coli was excellent. The film kept the favorable taste of Kimchi and Korean strawberry well.

  • PDF

Dissolution Characteristics of Liquid $CO_2$ Injected at the Intermediate Depth of the Ocean (중층심해에 분사된 액체 이산화탄소의 용해특성)

  • Kim, N.J.;Lee, J.Y.;Seo, T.B.;Kim, C.B.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.75-84
    • /
    • 2000
  • Global wanning induced by greenhouse gases such as carbon dioxide is a serious problem for mankind. Carbon dioxide ocean disposal is one of the promising options to reduce carbon dioxide concentration in the atmosphere because the ocean has vast capacity for carbon dioxide sequestration. However, the dissolution rate of liquid carbon dioxide in seawater must be known in advance in order to estimate the amount of carbon dioxide sequestration in the ocean. Therefore, the solubility, the surface concentration, the droplet size and other factors of liquid carbon dioxide at various depths are calculated. The results show that liquid carbon dioxide changes to carbon dioxide bubble around 500 m in depth, and the droplet is completely dissolved below 500 m in depth if carbon dioxide droplet is released both at 1000 m in depth with the initial droplet diameter of 0.011 m or less and at 1500 m in depth with the diameter of 0.015 m or less. In addition, the hydrate film acts as a resistant layer for the dissolution of liquid carbon dioxide. The surface concentration of carbon dioxide droplet with the hydrate film is about 50% at 1500 m in depth and about 60% at 1000 m in depth of the carbon dioxide solubility. Also, the ambient carbon dioxide concentration in the plume is an another crucial parameter for complete dissolution at the intermediate ocean depth, and the injection of liquid carbon dioxide from a moving ship is more effective than that from a fixed pipeline.

  • PDF