• Title/Summary/Keyword: Carbon film

Search Result 1,327, Processing Time 0.026 seconds

Formation of the Diamond Thin Film as the SOD Sturcture (SOD 구조 형성에 따른 다이아몬드 박막 형성)

  • Ko, Jeong-Dae;Lee, You-Seong;Kang, Min-Sung;Lee, Kwang-Man;Lee, Kae-Myoung;Kim, Duk-Soo;Choi, Chi-Kyu
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.1067-1073
    • /
    • 1998
  • High quality diamond films of the silicon on diamond (SOD) structure are deposited using CO and $H_2$ gas mixture in microwave plasma chemical vapor deposition (CVD), a SOD structure is fabricated using low pressure CVD polysilicon on diamond/ Si(100) substrate. The crystalline structure of the diamond films which composed of { 111} and {100} planes. were changed from octahedral one to cubo-octahedron one as the CO/$H_2$ ratios are increased. The high quality diamond films without amorphous carbon and non-diamond elements were deposited at the CO/$H_2$ flow rate of 0.18. and the main phase of the diamond films shows (111) plane. The diamond/Si(lOO) structure shows that the interface is flat without voids. The measured dielectric constant. leakage current and breakdown field were $5.31\times10^{-9}A/cm^2$ and $9\times{10^7}{\Omega}cm$ respectively.

  • PDF

Development of Titanium Dioxide (TiO2)-immobilized Buoyant Photocatalyst Balls Using Expanded Polystyrene (EPS)

  • Joo, Jin Chul;Lee, Saeromi;Ahn, Chang Hyuk;Lee, Inju;Liu, Zihan;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.215-220
    • /
    • 2016
  • A new immobilization technique of nanoscale $TiO_2$ powder to expanded polystyrene (EPS) balls with temperature-controlled melting method was developed, and the photocatalytic activity of $TiO_2$ powder-embedded EPS balls were evaluated using methylene blue (MB) solution under ultraviolet irradiation (${\lambda}=254nm$). Based on the scanning electron microscope (SEM) images and associated energy-dispersive X-ray spectroscopy (EDX) analysis, the components of the intact EPS balls were mainly carbon and oxygen, whereas those of $TiO_2$-immobilized EPS balls were carbon, oxygen, and titanium, indicating that relatively homogenous patches of $TiO_2$ and glycerin film were coated on the surface of EPS balls. Based on the comparison of degradation efficiencies of MB between intact and $TiO_2$-immobilized EPS balls under UVC illumination, the degradation efficiencies of MB can be significantly improved using $TiO_2$-immobilized EPS balls, and surface reactions in heterogeneous photocatalysis were more dominant than photo-induced radical reactions in aqueous solutions. Thus, $TiO_2$-immobilized EPS balls were found to be an effective photocatalyst for photodegradation of organic compounds in aqueous solutions without further processes (i.e., separation, recycling, and regeneration of $TiO_2$ powder). Further study is in progress to evaluate the feasibility for usage of buoyant $TiO_2$-immobilized EPS to inhibit the excessive growth of algae in rivers and lakes.

A study on a silicon surface modification by $CHF_3/C_2F_6$ reactive ion etching ($CHF_3/C_2F_6$ 반응성이온 건식식각에 의한 실리콘 표면의 변형에 관한 연구)

  • Park, Hyeong-Ho;Gwon, Gwang-Ho;Gwak, Byeong-Hwa;Lee, Su-Min;Gwon, O-Jun;Kim, Bo-U;Seong, Yeong-Gwon
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.214-220
    • /
    • 1991
  • The effects of $SiO_2$ reactive ion etching (RIE) in $CHF_{3/}C_2F_6$ on the surface properties of the underlying Si substrate were studied by X-ray photoelectron spectroscopy(XPS) and secondary ion mass spectrometry(SIMS) techniques. Angle-resolved XPS analysis was carried out as non-destructive depth profile one for investigating the chemical bonding states of silicion, carbon, oxygen and fluorine. The residue layer consists of C-F polymer. O-F bond was found on the top of the polymer layer and Si-O, Si-C and Si-F bonds were detected between Si substrate and polymer film. A 60nm thick damaged layer of silicon surface mainly contains carbon and fluorine.

  • PDF

Effect of Gallium Addition to HZSM-5 on Catalytic Pyrolysis of an LDPE-LLDPE-EVA Copolymer Mixture (HZSM-5를 이용한 LDPE-LLDPE-EVA공중합체 혼합물의 접촉 열분해 반응에 미치는 Gallium 첨가 효과)

  • Jeon, Jong-Ki;Kim, Hyunjin;Kim, Min Ji;Kang, Tae-Won;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.58-63
    • /
    • 2007
  • The aim of the present work is to study the effect of gallium addition to HZSM-5 on recovery rates of gaseous and liquid products and carbon number distribution in the catalytic cracking of a polymer mixture, LDPE, LLDPE, and EVA copolymer, with a composition similar to that found in real agricultural film wastes. Ga/HZSM-5 system produced a larger amount of aromatic hydrocarbons than HZSM-5. The yield of aromatic compound in vapor phase contact was higher than that in liquid phase contact. The yield of aromatic compound increased with the amount of catalyst and with the reaction temperature of catalyst bed. The effect of gallium addition on the carbon number distribution was not great.

Characteristics of Diamond Like Carbon Thin Film Deposited by Plasma Enhanced Chemical Vapor Deposition Method with Gas Flow Rate and Radio Frequency Power (가스 유량과 RF Power에 따라 PECVD 방법으로 증착된 DLC 박막의 특성)

  • Jeong, Seon-Yeong;Kim, Hyeon-Gi;Ju, Seong-Hu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.88-88
    • /
    • 2018
  • DLC(Diamond Like Carbon) 박막은 높은 열전도도, 큰 전기저항, 높은 강도 등의 다이아몬드와 유사한 특성을 가지고 있으면서 저온 저압에서도 합성이 가능하고, 합성 조건에 따라 물리 화학적 특성도 넓게 조절 할 수 있으며 상대적으로 넓은 면적에서 균일하고 평활한 박막의 합성이 가능하여 산업적 응용 면에서도 경쟁력을 갖추고 있다[1]. 이러한 DLC 박막을 합성함에 있어서 RF-PECVD(Radio Frequency Plasma Enhanced Chemical Vapor Deposition) 방법은 PECVD 방법 중 가장 보편적으로 사용되고 또 캐패시터 타입의 RF-PECVD 방법은 균일한 대면적 증착과 대량생산이 가능하다[1,2]. 본 연구에서는 우수한 특성을 갖는 DLC 박막의 증착 조건을 찾기 위해 캐패시터 타입의 RF-PECVD를 사용하여 공정 가스의 유량과 RF Power를 변화하여 박막을 증착하고, 증착된 박막의 특성을 연구하였다. DLC 박막은 ITO(Indium Tin Oxide) 유리 기판 위에 $100^{\circ}C$에서 5 min 동안 아세틸렌($C_2H_2$) 가스를 사용하여 가스 유량과 RF Power를 변화하여 증착하였다. 증착된 DLC 박막의 특성은 투과도, 평탄도, 두께를 측정하여 비교하였다. 가시광선 영역(380-780 nm)에서 투과도를 측정한 결과 ITO 유리 기판을 기준으로 한 DLC 박막의 투과도는 가시광선 영역 평균 94.8~98.8% 사이의 값으로 매우 높은 투과율을 나타내었다. 투과도는 가스 유량이 증가함에 따라 증가하는 경향을 나타내었고, RF Power의 변화에는 특정한 변화를 나타내지 않았다. 박막의 평탄도($R_a$, $R_{rms}$)와 두께는 AFM(Atomic Force Microscope)을 사용하여 측정하였다. 평탄도 $R_{rms}$는 0.8~3.3 nm, $R_a$는 0.6~2.5 nm 사이를 나타내었고 RF Power와 가스 유량의 변화에 따른 경향성을 나타내지는 않았다. 두께는 RF Power 25 W에서 55 W로 증가함에 따라 증가하는 경향을 나타내었으나 70W에서는 가스의 유량에 따라 상이한 결과를 나타내었다.

  • PDF

An Experimental Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum (탄소 복합재와 알루미늄 이종재료 단일겹침 접착 체결부의 강도에 관한 실험 연구)

  • Kim, Tae-Hwan;Lee, Chang-Jae;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.204-211
    • /
    • 2007
  • Experiments were conducted to investigate the failure and strengths of carbon composite-to-aluminum single-lap bonded joints with 5 different bonding lengths. Joint specimens were fabricated to have secondary bonding of laminate and aluminum with a film type adhesive, FM73m. Tested joints have the bonding strengths between the values of aluminum-to-aluminum joints and composite-to-composite joints. In the joints with bonding length-to-width ratio smaller than 1, the strength decreases as the bonding length increases. In the joints with the ratio larger than 1, however, the strength converges to a constant value. Final failure mode of all the specimens was delamination. To use the maximum strength of the adhesive, it is important to design the joint to have strong resistance to delamination.

Direct-Patternable SnO2 Thin Films Incorporated with Conducting Nanostructure Materials (직접패턴형 SnO2 박막의 전도성 나노구조체 첨가연구)

  • Kim, Hyun-Cheol;Park, Hyung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.513-517
    • /
    • 2010
  • There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable $SnO_2$ thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable $SnO_2$ thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the $SnO_2$ thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of $SnO_2$ thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized $SnO_2$ thin films showed a relation between band structural change and electrical resistance. Direct-patterning of $SnO_2$ hybrid films with a line-width of 30 ${\mu}m$ was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of $SnO_2$ films can be improved by incorporating Ag nanoparticles and MWNTs.

Coadsorptions of Carbon Monoxide and Oxygen on Polycrystalline Nickel Surface (다결정 니켈 표면에서의 CO 와 $O_2$의 공동흡착)

  • Soon Bo Lee;Jin Hyo Boo;Woo Sub Kim;Woon Sun Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1019-1024
    • /
    • 1993
  • The coadsorption of carbon monoxide and oxygen on polycrystalline nickel surface has been studied using XPS at the room temperaure. The adsorption of CO on the nickel surface precovered partially with oxygen is found to take place by the following steps: The CO molecules react with the preadsorbed oxygen atoms to liberate $CO_2$ gas at the initial stage of low CO exposures, and they are coadsorbed gradually with the increasing CO exposures. The extent of coadsorption at the higher CO exposures is found to decrease with the increasing degree of oxygen preadsorption. This finding is explained in terms of the reduced adsorption site for CO as a consequence of oxygen preadsorption. The CO molecules preadsorbed on the nickel surface inhibited the adsorption of $O_2$ molecules. The increase of oxygen exposure led to the dissociation of preadsorbed CO, and the NiO layers were formed concurrently. The dissociation was rendered to arise from an oxygen-to-CO energy transfer.

  • PDF

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

A Study on Modified Silicon Surface after $CHF_3/C_2F_6$ Reactive Ion Etching

  • Park, Hyung-Ho;Kwon, Kwang-Ho;Lee, Sang-Hwan;Koak, Byung-Hwa;Nahm, Sahn;Lee, Hee-Tae;Kwon, Oh-Joon;Cho, Kyoung-Ik;Kang, Young-Il
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.45-57
    • /
    • 1994
  • The effects of reactive ion etching (RIE) of $SiO_2$ layer in $CHF_3/C_2F_6$ on the underlying Si surface have been studied by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometer, Rutherford backscattering spectroscopy, and high resolution transmission electron microscopy. We found that two distinguishable modified layers are formed by RIE : (i) a uniform residue surface layer of 4 nm thickness composed entirely of carbon, fluorine, oxygen, and hydrogen with 9 different kinds of chemical bonds and (ii) a contaminated silicon layer of about 50 nm thickness with carbon and fluorine atoms without any observable crystalline defects. To search the removal condition of the silicon surface residue, we monitored the changes of surface compositions for the etched silicon after various post treatments as rapid thermal anneal, $O_2$, $NF_3$, $SF_6$, and $Cl_2$ plasma treatments. XPS analysis revealed that $NF_3$ treatment is most effective. With 10 seconds exposure to $NF_3$ plasma, the fluorocarbon residue film decomposes. The remained fluorine completely disappears after the following wet cleaning.

  • PDF