HZSM-5를 이용한 LDPE-LLDPE-EVA공중합체 혼합물의 접촉 열분해 반응에 미치는 Gallium 첨가 효과

전종기·김현진·김민지·강태원·박영권**

공주대학교 화학공학과, *서울시립대학교 환경공학부 (2006년 10월 31일 접수, 2006년 11월 22일 채택)

Effect of Gallium Addition to HZSM-5 on Catalytic Pyrolysis of an LDPE-LLDPE-EVA Copolymer Mixture

Jong-Ki Jeon, Hyunjin Kim, Min Ji Kim, Tae-Won Kang, and Young-Kwon Park*[†]

Department of Chemical Engineering, Kongju National University, Chungnam 314-701, Korea *Faculty of Environmental Engineering, University of Seoul, Seoul 130-743, Korea (Received October 31, 2006; accepted November 22, 2006)

본 연구는 농업용 필름을 제조하는데 사용되는 LDPE, LLDPE 및 EVA공중합체로 구성된 혼합물의 접촉 열분해 반응 에 있어서 HZSM-5 촉매에 Ga을 첨가했을 경우 기체 및 액상 생성물의 수율, 탄소 수 분포 등에 미치는 영향을 조사하 는 것을 목적으로 한다. Ga/HZSM-5를 사용한 결과, HZSM-5에 비해 방향족 화합물의 생성이 증가함을 알 수 있었다. 특히 기상 반응을 수행했을 때 더 많은 방향족 화합물을 얻을 수 있었다. 또한 촉매 양을 증가시키고 촉매층 온도를 500 ℃ 이상으로 유지한 결과 더 높은 방향족 수율이 얻어졌다. 생성물의 탄소 수 분포는 Ga 첨가에 의해 별로 영향을 받지 않았다.

The aim of the present work is to study the effect of gallium addition to HZSM-5 on recovery rates of gaseous and liquid products and carbon number distribution in the catalytic cracking of a polymer mixture, LDPE, LLDPE, and EVA copolymer, with a composition similar to that found in real agricultural film wastes. Ga/HZSM-5 system produced a larger amount of aromatic hydrocarbons than HZSM-5. The yield of aromatic compound in vapor phase contact was higher than that in liquid phase contact. The yield of aromatic compound increased with the amount of catalyst and with the reaction temperature of catalyst bed. The effect of gallium addition on the carbon number distribution was not great.

Keywords: pyrolysis, LDPE-LLDPE-EVA copolymer, HZSM-5, gallium, vapor phase reaction

1. 서 론

재생 가능한 에너지원으로서 높은 잠재력에도 불구하고, 폐플라스 틱들은 일반적으로 버려져 왔으며 지속적인 축적으로 인하여 심각한 문제가 야기되고 있다. 폐플라스틱의 발생량을 저감하기 위한 대책과 생분해성 플라스틱의 사용이 대두되고 있지만, 전체적인 폐플라스틱 문제에 있어서 아직까지 효과적인 해결책이 되지는 않는다. 연료 또 는 화학물질로서의 폐플라스틱의 이용은 폐기물로부터 에너지회수의 가능성을 제공하는 매력적인 해결책이다. 폐플라스틱의 열분해는 이 폐기물을 경제적으로 값비싼 탄화수소들로 변화시키는 중요한 역할 을 할 수 있으며 그 생성물은 연료로서 또는 석유 화학 산업의 공급 원료로서 사용될 수 있다. 열분해 연구는 폐플라스틱을 액체, 기체 탄 화수소 및 고체 잔사물로 변환시키기 위한 효과적인 수단을 찾아내는 데 노력을 기울여 왔다[1-3].

농업용 필름은 주로 에틸렌 비닐 아세테이트 공중합체(EVA), 저밀 도 폴리에틸렌(LDPE), 그리고 선형 저밀도 폴리에틸렌(LLDPE)으로 구성되어 있다. EVA공중합체의 무촉매 열분해 및 접촉 열분해는 지 금까지 많은 관심을 받지 못했다. 최근에 몇몇 저자들은 EVA 공중합

페플라스틱 중에서 폐 농업용 필름은 농촌에서 환경 문제로 대두되 고 있다. 한국에서의 농업용 필름 생산량은 대략 100,000 톤/년인데 이 중 대부분은 농촌에서 폐 필름으로 버려진다. 이 필름의 수명은 태 양 복사 및 산화 등에 의해 분해되기 때문에 1~2년에 불과하다. 그러 므로, 환경문제를 야기하지 않는 폐 농업용 필름 처리 방법의 개발이 필수적이다. 폐 농업용 필름의 환경친화적 처리 기술로서 열분해에 대한 연구가 집중되고 있다. 그러나 열분해는 낮은 선택성과 높은 에 너지 소비와 같은 단점을 갖고 있다[4]. 선택성을 개선하고 에너지 소 모를 저감하기 위하여 접촉 열분해 기술이 소개되었다. 많은 연구들 은 다양한 제올라이트 즉, ZSM-5, Y-type, zeolite beta, mordenite 등을 사용하였다.[4-11]. 이 촉매들 중에서 강한 산성 때문에, ZSM-5가 집 중적으로 연구되었다.

[†] 주 저자 (e-mail: catalica@uos.ac.kr)

체를 포함하는 폴리머 혼합물의 열분해에 대한 연구결과를 보고하였 다[12,13].

본 연구는 농업용 필름을 제조하는데 사용되는 EVA공중합체, LDPE, LLDPE 혼합물의 접촉 열분해 반응에 있어서 HZSM-5 촉매에 Ga을 첨가했을 경우 기체 및 액상 생성물의 수율, 탄소 수 분포 등에 미치는 영향을 조사하는 것을 목적으로 한다. 용해된 고분자가 액상 으로 고체 촉매와 직접 접촉하게 되는 형태의 반응(액상 접촉)과 고분 자가 탄화수소 기체로 분해되어 후단에 설치된 고정층 반응기에서 고 체촉매 입자들과 접촉하는 형태의 반응(기상 접촉)에서 Ga/HZSM-5 의 효과를 비교하였다.

2.실 험

2.1. 실험 재료

이 실험에 사용된 플라스틱 혼합물은 LDPE (BF500, $M_n = 20000$, $M_w = 144000$, Melt Index = 3.0 g/10 min, density = 0.92 g/cm³), LLDPE (UF315, $M_n = 32000$, $M_w = 175000$, Melt Index = 1.0 g/10 min, density = 0.923 g/cm³), 그리고 EVA 공중합체 (VS430, (-CH₂-CH(O₂CCH₃)-)_x(-CH₂-CH₂-)_y, 19.0 wt.% 비닐 아세테이트, $M_n = 18000$, $M_w = 115000$, Melt Index = 2.5 g/10 min, density = 0.939 g/cm³)을 포함하며 현대석유화학(주)로부터 제공 받았다.

이 연구에서 사용된 촉매는 직경이 2 mm, 길이 7 mm이고 Si/Al₂ 가 30인 HZSM-5 촉매이다. HZSM-5 촉매는 500 ℃에서 6 h 동안 공기 중에서 소성되었다. 1 wt% Ga/HZSM-5는 함침법으로 제조되었 다. 질산갈륨(Aldrich, 99.9%) 수용액의 혼합물과 HZSM-5를 혼합한 후 80 ℃에서 3 h 동안 진공 하에서 물을 증발시켰다. 이 촉매를 130 ℃에서 12 h 동안 건조하고 500 ℃에서 4 h 동안 공기 중에서 소성시 켰다. 450 ℃에서 4 h 동안 수소를 흘리면서 환원시킨 후, 최종적으로 500 ℃에서 4 h 동안 공기 중에서 소성시켰다.

2.2. 촉매 특성 분석

77 K에서 Micromeritics ASAP 2010 장치를 이용하여 질소 흡착-탈 착 등온선을 얻었다. 촉매는 5 h 동안 200 ℃ 및 진공 하에서 outgassing을 수행한 후 BET 표면적을 얻었다. 촉매의 결정성을 XRD 에 의해 확인하였다. XRD는 CuK *α* 복사 에너지를 사용하는 Rigaku D/MAX-II를 사용하여 얻었다.

촉매들의 암모니아 승온 탈착 실험(TPD)은 Micromeritics 2900 TPD 장치에 실행되었다. 샘플을 실온으로부터 550 ℃까지 15 ℃/min 의 가열속도로 헬륨 흐름 하에서(50 mL/min) outgassing하였다. 550 ℃에서 1 h 동안 유지한 후 샘플들은 30 min 동안(30 mL/min) 암모니 아로 처리하고 180 ℃로 냉각하였다. 이 온도에서 암모니아를 30 min 동안 흡착시킨 후 2 h 동안 헬륨을 흘려서 물리 흡착된 암모니아를 제거하였다. 분당 15 ℃로 550 ℃까지 온도를 증가시키면서 탈착되는 암모니아를 열전도도 검출기(TCD)로 측정하였다.

고분자의 열 중량 분석(TGA)은 질소 흐름 하에서 Chan TGA (TH-2121)에 의해 수행되었다. 샘플은 5 ℃/min의 속도로 실온으로부 터 600 ℃까지 가열되었다.

2.3. 반응기

무촉매 열분해 및 접촉 열분해는 1기압의 질소 흐름 하에서 반회분 식 Pyrex 반응기에서 수행되었다. 반응기 외부에 전기 가열로를 장착 하였다. 고분자 열분해에 고체 촉매의 성능을 조사하기 위하여 고분 자와 촉매들이 접촉하는 형태를 2가지로 나누어 비교하였다. 첫 번째 는 용해된 고분자가 액상으로 고체 촉매와 직접 접촉하게 되는 형태 (액상 접촉)이고, 두 번째는 고분자가 탄화수소 기체로 분해된 후에 후단에 설치된 별도의 고정층 반응기에서 고체촉매 입자들과 접촉하 는 형태(기상 접촉)이다(Figure 1).

2.4. 반응과정

촉매 1.0 g과 고분자 10 g을 반응기 안에 넣고 완전히 혼합한 후,

20

30

40

2 theta

Figure 3. TPD profiles of ammonia from used- and fresh catalyst.

반응온도까지 min당 20 ℃의 속도로 가열하고 1 h 동안 일정하게 유 지하였다. 반응 온도에서 가스 생성물은 질소 흐름에 의해 반응기로 부터 유출되었다. 생성된 기체 혼합물은 냉각 장치에 의해 응축되어 액체와 기체로 분리되었다. 액체는 응축기의 하부에 모아져서 무게를 측정하였다. 기체 생성물은 gas bag에 모아졌으며 기체의 유량은 유량 계로 측정하였다. 고분자 전환율은 처음에 넣은 고분자 혼합물 대비 포집된 기체와 액체 생성물의 합으로 정의되었다.

2.5. 생성물 분석

기체 생성물은 capillary column (HP-plot Al₂O₃/KCl, 50 m × 0.32 mm × 0.25 μm)과 FID가 장착된 영린-M600D 기체 크로마토그래피에 의해 분석되었다. 액체 생성물은 capillary column (HP-5, 30 m × 0.32 mm × 0.25 μm)과 FID가 장착된 Agilent-6890 기체 크로마토그래피에 의해 분석되었다. 액체 생성물의 정성분석은 capillary column (HP-5, 30 m × 0.32 mm × 0.25 μm)이 장착된 GC-MS (HP 5973)를 사용하 였다.

3. 결과 및 고찰

3.1. 촉매 특성

Figure 2에 보듯이 HZSM-5와 Ga을 함침한 Ga/HZSM-5의 XRD 피

Ga/HZSM-5

50

60

Figure 4. TGA curves of the polymer with catalysts.

크는 차이가 거의 없는 것을 알 수 있다. 즉 Ga2O의 피크가 나타나지 않는 것으로 보아 Ga이 HZSM-5 내에 잘 분산되어 있음을 알 수 있 다. Figure 3은 암모니아 TPD를 이용하여 촉매의 산특성을 나타내었 다. HZSM-5는 약 240 ℃와 약 500 ℃ 부근에서 두 개의 피크를 보이 고 있다. 약 240 ℃ 부근의 피크는 약한 산점에 해당하고, 약 500 ℃ 부근의 피크는 강한 산점, 주로 브뢴스테드 산점에 기인한다. HZSM-5에 Ga이 함침됨에 따라 강산점과 약산점의 산량이 둘 다 감소하여 전체적인 산량이 감소함을 알 수 있다. 또한 약산점의 피크 온도가 약 간 정온으로 이동하여 산세기도 감소함을 알 수 있다.

3.2. TGA (열중량분석기) 분석

Figure 4는 LDPE, LLDPE, EVA공중합체 혼합물을 질소 흐름 하의 TG 분석 결과를 보여준다. LDPE와 LLDPE는 470 ℃ 부근에서 가파 른 무게감소를 보여주고, EVA공중합체는 300~350 ℃와 400~470 ℃에서 무게 감소가 나타나는 것으로 보고되고 있다. LDPE, LLDPE, EVA공중합체 혼합물의 경우는 400~460 ℃에서 무게 감소가 일어났 는데, HZSM-5를 사용했을 때 열분해 온도는 HZSM-5의 산 촉매 반 응 때문에 약 50 ℃ 정도 감소되었다. Figure 4에서 보듯이, 고분자의 분해가 Ga/HZSM-5 상에서 HZSM-5보다 약간 늦게 진행됨을 알 수 있다. 이 결과는 암모니아 TPD 결과에서 볼 수 있듯이 HZSM-5에 갈 륨의 첨가에 의하여 HZSM-5의 산량과 산세기가 감소 및 억제되었기

			·	ιι	
	Thermal	HZS	SM-5	Ga/HZSM-5	
		Catalyst in liquid phase	Catalyst in vapor phase	Catalyst in liquid phase	Catalyst in vapor phase
Yield (wt%)					
Gaseous	26.0	62.1	66.6	51.7	64.6
Liquid	72.5	36.4	32.8	46.8	35.2
Residue	1.5	1.5	0.6	1.5	0.2
Total	100.0	100	100	100	100
Product distribution (wt%)					
C1	2.0	0.5	0.8	0.3	1.2
C ₂	5.4	2.9	6.7	2.0	8.3
C ₃	4.3	15.6	23.8	12.8	22.4
C_4	7.3	25.4	22.2	21.6	20.5
C ₅ -C ₁₂	21.5	37.7	28.0	34.0	25.8
C ₁₃ +	59.1	13.6	13.7	24.9	10.0
Aromatics Total (wt%)	0.0	4.3	4.9	4.4	11.9
Benzene	0.0	1.4	0.4	0.6	0.9
Toluene	0.0	0.6	1.6	0.6	4.6
Ethyl benzene	0.0	0.3	0.4	0.3	0.9
Xylene	0.0	1.2	1.8	1.4	4.2
Others	0.0	0.8	0.7	1.5	1.3

Table 1. Effect of Gallium Addition to HZSM-5 on Product Distributions of Polymer Mixture Pyrolysis

Feed: LDPE 2.5 g, LLDPE 2.5 g, EVA copolymer 5 g

Catalyst/Polymer: 1/10

Pyrolysis temperature: 460 °C

Fixed catalyst bed temperature: 500 $\,^\circ\!\mathrm{C}$

Table 2. Effect of Ga/HZSM-5 Amount and Temperature of Catalyst Bed on Product Distributions of Polymer Mixture Pyrolysis

10/0	10/1	10/1	10/1	10/3
500	450	500	550	500
26.0	59.3	64.6	66.2	72.7
72.5	40.4	35.2	33.0	26.8
1.5	0.3	0.2	0.8	0.5
100.0	100.0	100.0	100.0	100
2.4	0.8	1.2	2.3	1.4
5.4	5.0	8.3	11.9	9.9
4.3	19.5	22.4	23.5	26.6
7.3	21.2	20.5	18.0	22.1
21.5	31.5	25.8	21.4	22.3
29.1	13.8	10.0	13.2	3.8
0.0	8.1	11.9	9.8	13.9
0.0	0.4	0.9	1.1	0.9
0.0	2.5	4.6	4.2	5.5
0.0	0.7	0.9	0.7	0.9
0.0	3.0	4.2	3.0	5.3
0.0	1.4	1.3	0.8	1.2
	$ \begin{array}{r} 10/0 \\ 500 \\ 26.0 \\ 72.5 \\ 1.5 \\ 100.0 \\ 2.4 \\ 5.4 \\ 4.3 \\ 7.3 \\ 21.5 \\ 29.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ $	$\begin{array}{c ccccc} 10/0 & 10/1 \\ \hline 500 & 450 \\ \hline \\ 26.0 & 59.3 \\ 72.5 & 40.4 \\ 1.5 & 0.3 \\ 100.0 & 100.0 \\ \hline \\ 2.4 & 0.8 \\ 5.4 & 5.0 \\ 4.3 & 19.5 \\ 7.3 & 21.2 \\ 21.5 & 31.5 \\ 29.1 & 13.8 \\ 0.0 & 8.1 \\ 0.0 & 0.4 \\ 0.0 & 2.5 \\ 0.0 & 0.7 \\ 0.0 & 3.0 \\ 0.0 & 1.4 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Feed: LDPE 2.5 g, LLDPE 2.5 g, EVA copolymer 5 g Pyrolysis temperature: 460 $\,{}^\circ\!\mathrm{C}$

때문이다.

3.3. 열분해 반응

Table 1에서 보듯이, 무촉매 열분해에 비해 촉매를 사용하면 C₁₃₊ 이상의 왁스 성분의 양을 크게 감소시켜 유용한 성분으로 전환시킴 을 알 수 있다. HZSM-5는 기상 성분이 많이 얻어지고, Ga/HZSM-5 는 상대적으로 액상의 수율이 더 높음을 알 수 있다. 이 결과는 암모 니아 TPD (Figure 3)에서 확인하였듯이, 갈륨의 혼합에 의한 HZSM-5의 강한 산점의 감소에 의해 증기의 overcracking이 억제되었다는 사실 때문이다.

특히 기상 반응을 수행했을 때, Ga/HZSM-5의 방향족 수율이 제일 높음을 알 수 있다. 따라서 기상 반응에서의 촉매층 온도가 방향족 수 율에 미치는 영향을 조사하였다(Table 2). 온도를 증가시킬 경우 대체 적으로 방향족 수율이 증가함을 알 수 있다. 보통 방향족화 반응은

Figure 5. Product distribution in polymer mixture pyrolysis with the catalyst in liquid phase (Feed: LDPE 2.5 g, LLDPE 2.5 g, EVA copolymer 5 g, Catalyst/Polymer = 1/10, Pyrolysis temperature: 460 °C).

Figure 6. Product distribution in polymer mixture pyrolysis with the catalyst in vapor phase (Feed: LDPE 2.5 g, LLDPE 2.5 g, EVA copolymer 5 g, Catalyst/Polymer = 1/10, Pyrolysis temperature: 460 °C, Fixed catalyst bed temperature: 500 °C).

500 ℃ 이상에서 선호된다. 따라서 기상 반응의 촉매층의 온도가 500 ℃이므로 방향족의 생성이 더 많은 것으로 여겨진다. 촉매양을 증가 시킨 결과(Table 2), 방향족 양이 더 증가하였다. 이는 Ga/HZSM-5 양 이 증가할수록 접촉하는 고분자가 더 증대되기 때문으로 여겨진다.

Figure 5는 액상 반응을 수행했을 때, 생성물의 분포도를 나타낸 것 이다. 무촉매 열분해보다 촉매를 사용했을 경우 가솔린 유분에 해당 하는 오일이 많이 얻어짐을 알 수 있다. HZSM-5와 Ga/HZSM-5에서 탄소수의 분포는 거의 일치하였다. Figure 6은 기상 분해를 했을 때의 생성물 분포도이다. 여기에서도 HZSM-5와 Ga/HZSM-5의 탄소수 분 포는 비슷함을 알 수 있다. 그러나, Table 1에서 보듯이, Ga을 첨가한 경우 방향족 화합물의 수율이 증가하였다. 브뢴스테드 산을 가진 촉 때 상에서 파라핀은 카르보늄 이온을 형성하여 올레핀을 만든 뒤, 올 레핀이 카르베늄 이온으로 변환하고, 다시 고리화, 탈수소화를 거쳐서 방향족 화합물로 변환된다[14]. 한편 Ga은 파라핀과 고리화합물의 탈 수소화를 촉진시키는 것으로 알려져 있다[14,15]. 따라서 같은 C₆ 화 합물이라고 하더라도, Ga/HZSM-5는 방향족인 벤젠의 수율이 높고,

Figure 7. Effect of Ga/HZSM-5 amount on product distribution in polymer mixture pyrolysis with the catalyst in vapor phase (Feed: LDPE 2.5 g, LLDPE 2.5 g, EVA copolymer 5 g, Pyrolysis temperature: 460 °C, Fixed catalyst bed temperature: 500 °C).

Figure 8. Effect of fixed catalyst bed temperature on product distribution in polymer mixture pyrolysis with the catalyst in vapor phase (Feed: LDPE 2.5 g, LLDPE 2.5 g, EVA copolymer 5 g, Pyrolysis temperature: 460 $^{\circ}$ C).

HZSM-5는 사이클로 헥산, 헥산, 헥센 등의 수율이 더 높게 나타난다. 브뢴스테드 상에서 생성되는 사이클로헥산과 같은 고리화합물의 탈 수소를 촉진시켜 방향족화합물의 수율이 높게 된다.

Figure 7은 촉매 양을 변화시켰을 때, 생성물 분포를 나타낸 것이다. 대체적으로 생성물의 분포가 일정함을 알 수 있다. 여기서도 촉매 양 이 증가하면 Ga의 양이 증가하기 때문에 사이클로 헥산과 같은 화합 물의 탈수소를 촉진시켜 방향족 화합물의 생성이 증가되는 것으로 여 겨진다. 또한 Ga/HZSM-5의 양이 증가하면 갈륨이 벤젠 알킬화를 촉 진시키기 때문에 톨루엔과 자일렌들과 같은 벤젠 유도체들의 양이 증 가하였다. Figure 8은 온도에 따른 생성물 분포를 나타낸 것이다. 여기 에서도 전체적인 탄소수는 일정하였다. 그러나 Table 1에서 보듯이 대 체적으로 온도가 500 ℃ 이상에서 방향족 화합물의 생성이 촉진된다.

4. 결 론

EVA공중합체, LDPE, LLDPE 혼합물의 접촉 열분해 반응에 있어

서 Ga/HZSM-5를 사용한 결과, HZSM-5에 비해 방향족 화합물의 생 성이 증가함을 알 수 있다. 특히 기상 반응을 수행했을 때 더 많은 방 향족 화합물을 얻을 수 있었다. 또한 촉매 양을 증가시키고 온도를 500 ℃ 이상으로 유지한 결과 더 높은 방향족 수율이 얻어졌다. 생성 물의 탄소 수 분포는 Ga 첨가에 의해 크게 영향을 받지 않았다.

감 사

본 연구는 산업자원부 지정 공주대학교 자원재활용 신소재 지역혁 신센터의 지원에 의한 것입니다.

참고문 헌

- G. Madras, G. Y. Chung, J. M. Smith, and B. J. McCoy, *Ind. & Eng. Chem. Res.*, 36 2019 (1997).
- 2. S. S. Kim and S. Kim, Chem. Eng. J., 98, 53 (2003).
- T. Faravelli, M. Pinciroli, F. Pisanol, G. Bozzano, M. Dente, and E. Ranzi, J. Anal. Appl. Pyrolysis, 60, 103 (2001).
- Y. K. Park, J. S. Kim, J. Choi, J. K. Jeon, S. Kim, S. S. Kim, and K. S. Yoo, Kor. J. Kor. Soc. Waste Manage., 20, 566 (2003).

- 5. H. J. Yu, B. H. Lee, and D. S. Kim, *Polymer(Korea)*, **27**, 84 (2003).
- P. T. Williams and H. M. Chishti, J. Anal. Appl. Pyrolysis, 55, 217 (2000).
- 7. G. Manos, A. Garforth, and J. Dwyer, *Ind. Eng. Chem. Res.*, **39**, 1198 (2000).
- J. W. Park, J. H. Kim, and G. Seo, *Polym. Degrad. Stab.*, **76**, 495 (2002).
- 9. R. Bagri and P. T. Williams, J. Anal. Appl. Pyrolysis, 63, 29 (2002).
- K. Takuma, Y. Uemichi, and A. Ayame, *Appl. Catal. A: General*, 192, 273 (2000).
- Y. K. Park, J. S. Kim, J. K. Jeon, J. E. Lim, J. M. Kim, and K. S. Yoo, *Polymer(Korea)*, **29**, 122 (2005).
- D. P. Serrano, J. Aguado, J. M. Escola, J. M. Rodriguez, L. Morselli, and R. Orsim, J. Anal. Appl. Pyrolysis, 68, 481 (2003).
- A. Marcilla, A. Gomez, S. Menargues, J. Aarcia-Martinez, and D. Cazorla-Amoros, J. Anal. Appl. Pyrolysis, 68, 495 (2003).
- 14. Y. K. Park and M. S. Thesis, KAIST (1994).
- 15. H. J. Park, J. K. Jeon, J. H. Yim, J. I. Dong, K. S. Yoo, J. M. Sohn, and Y. K. Park, accepted in *J. Ind. Eng. Chem.*