• Title/Summary/Keyword: Carbon fiber sheet (CFS)

Search Result 82, Processing Time 0.019 seconds

A Comparative Study on the Shear-Strengthening Effect of RC Beams Strengthened by FRP (FRP로 보강된 RC보의 전단보강효과 비교연구)

  • 심종성;김규선
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.101-111
    • /
    • 1998
  • This study presents test results of RC beams strengthened by carbon fiber sheet(CFS), carbon fiber reinforced plastics(CFRP) or glass fiber reinforced plastics(GFRP) for increasing shear resistance. Nineteen specimens were tested, and the test was performed with different parameters including the type of strengthening materials(CFS, GFRP, CFRP), shear-strengthening methods(wing type, jacket type, strip type), strip-spacing, strengthening direction of FRP. The test results show that shear-damaged RC beams strengthened by FRP(CFS, GFRP, CFRP) have more improved the shear capacity. The mathematical model based on plastic theory was also developed to predict shear strength of shear-damaged RC beams strengthened by FRP. The predictions using the mathematical model. are agreed with the observations from the observed shear strengths for 19 test beams.

An Experimental Study on the Strengthening Effect of RC Beam subjected to Repeated Loading during CFS Strengthening Process (탄소섬유 보강 중에 반복하중을 받은 RC보의 보강효과에 관한 실험적 연구)

  • Jang, Hee-Suk;Kim, Hee-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.183-189
    • /
    • 2006
  • When RC structures are repaired or strengthened using FRP, it is required to cure for some Period under certain air temperature and then it is hopeful to avoid detrimental action caused by external vibration sources during that period. Therefore, an effect of repeated loading during Carbon Fiber Sheet(CFS) strengthening Process on the strengthening efficiency is studied through an experiment for a number of RC beams. Experimental results showed that the curing time of 24 hours without any repeated loading after CFS attachment were recommended for 1 ply strengthening, and 12 hours for 2 plies strengthening.

Effect of Anchorage Type of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 정착 보강방법이 RC보의 휨거동에 미치는 영향)

  • Shin, Sung Woo;Bahn, Byong Youl;Lee, Kwang Soo;Cho, In Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.202-208
    • /
    • 1998
  • To investigae the effect of anchorage type of carbon fiber sheet (CFS) on flexural behavior of RC beams, the loading test of RC beams reinforced with CFS was conducted in variable of anchorage Type such as bolting anchorage and U type anchorage using CFS. This study can be summarized as follows ; It is confirmed experimentally that the bolting anchorage and U type anchorage with CFS is very effective to delay the bond failure and prevent the peeling of CFS. Also, the anchorage type applied with this study is very effective to improve the ductility compared with the improving of maximum flexural strength of RC beams. It is believed that the anchorage type used this study must secure the ductile capacity of above 3 for the flexural strengthening of RC beams. In the future, it is required to obtain the data about anchorage type of CFS for utilization of field work as well as investigate the ductile capacity of conventional study of anchorage type

  • PDF

Flexural Failure Behaviour of RC Beams Strengthened by CFS according to Loading Condition (CFS로 보강된 RC보의 가력상태에 따른 휨파괴 거동)

  • Park, Sung-Soo;Cho, Su-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • The purpose of this research are to investigate experimentally flexural strengthening effects and flexural behaviour of RC beams strengthened by carbon fiber sheet(CFS) with/without superimposed pre-load. Test parameters of experiment are tension reinforcement ratio(0.85, 1.32, 1.91%) and pre-load(80% of yield capacity of unstrengthened beams). The structural behaviour of strengthened beams are compared with in terms of yield load and ultimate load, load-deflection relation, ductility, strengthened efficiency. From the test results, it were shown that ultimate capacity and flexural failure behaviour of RC beams strengthened by CFS changed by initial stresses between original beams and bonded CFS.

Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향)

  • Shin, Sung Woo;Bahn, Byong Youl;Ahn, Jong Mun;Cho, In Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.195-201
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows ; The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS is increased, the ductility of RC beams is increased because of delaying the peeling of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFS is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

A Study on the Shear Behavior of Strengthened R/C Beams with CFS (탄소섬유쉬트로 보강한 R/C보의 전단거동에 관한 연구)

  • Shin, Sung-Woo;Bahn, Byong Youl;Lee, Kwang Soo;Cho, In-Chol;Nam, Jeong-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.3
    • /
    • pp.205-211
    • /
    • 1998
  • The purpose of this study is to evaluate shear strengthening effects of R/C beams with carbon fiber sheets. The major variables are shear reinforcement ratios, CFS strengthening ratios and strengthening methods of CFS. Following conclusions can be extracted. The shear capacity of beam strengthened with CFS is about 32~87% higher than that of beams without shear reinforcement. The strengthening effects of patch type is larger than those of strip type. The strain distribution in CFS intersected with shear crack is similar to that in stirrup and larger strain is observed in the middle of the shear span. It can be estimated that shear strength reduction factor ${\alpha}$=0.3 is appropriate for peeling effect of CFS.

  • PDF

An Experimental Study on Half Scale RC Slab Bridges Strengthened with Carbon Fiber Sheet (CFS로 보강된 모형 RC 슬래브 교량의 실험적 연구)

  • 심종성;김규선;김경민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.537-542
    • /
    • 1999
  • The design methodologies for carbon fiber sheet(CFS) strengthening of RC structures are not well established yet because the structural behavior of strengthened RC structures is more complex than that of unstrengthened ones. Even though the research for the methods using CFS has beed studied, the strengthening effects and structural behaviors of strengthened structures are not systematized yet. The purpose of this study is to carry out the experimental studies on three kinds of half scale RC slab bridges and to investigate the behavior of RC slab bridges from the experimental results. Typical flexural failure occurs in the non-strengthening slab like general RC slab bridges, and also the flexural failure occurs in the all area strengthened slab with sudden rip-off failure of strengthening material by punching shear. For the case of strip type strengthened slab, flexural failure occurs, with rip-off of second strip at the base of loading point. Strengthening effect on the slab using CFS is that the strength is increased upto 7~15 percent and the crack pattern is changed.

  • PDF

Shear Strengthening of Pre-loaded RC Beams Retrofitted with CFS & Steel Plate (재하상태에 따른 탄소섬유쉬트 및 강판의 전단 보강 효과)

  • 김주연;신영수;홍건호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.775-780
    • /
    • 2000
  • This paper was aimed to investigate the shear strengthening effect of the pre-loaded reinforced concrete beams strengthened by carbon fiber sheet (CFS) & steel plate. Main test parameters were the magnitude of pre-loading at the time of the retrofit, the strengthening methods of carbon fiber sheet and aid ratio. A series of seventeen specimens was tested to evaluate the corresponding effect of each parameters such as maximum load capacity, load-deflection relationship, load-strain relationship and failure mode. As a result, using the steel plate can increase the capacity of not only shear but also bending moment.

  • PDF

Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads

  • Park, Jai Woo;Hong, Young Kyun;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.187-205
    • /
    • 2010
  • The existing CFT columns present the deterioration in confining effect after the yield of steel tube, local buckling and the deterioration in load capacity. If lateral load such as earthquake load is applied to CFT columns, strong shearing force and moment are generated at the lower part of the columns and local buckling appears at the column. In this study, axial compression test and beam-column test were conducted for existing CFT square column specimens and those reinforced with carbon fiber sheets (CFS). The variables for axial compression test were width-thickness ratio and the number of CFS layers and those for beamcolumn test were concrete strength and the number of CFS layers. The results of the compression test showed that local buckling was delayed and maximum load capacity improved slightly as the number of layers increased. The specimens' ductility capacity improved due to the additional confinement by carbon fiber sheets which delayed local buckling. In the beam-column test, maximum load capacity improved slightly as the number of CFS layers increased. However, ductility capacity improved greatly as the increased number of CFS layers delayed the local buckling at the lower part of the columns. It was observed that the CFT structure reinforced with carbon fiber sheets controlled the local buckling at columns and thus improved seismic performance. Consequently, it was deduced that the confinement of CFT columns by carbon fiber sheets suggested in this study would be widely used for reinforcing CFT columns.

Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향)

  • 신성우;반병렬;안종문;조인철;김영수;조삼재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.579-584
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows. The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFA is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF