• Title/Summary/Keyword: Carbon fiber laminate composite

Search Result 112, Processing Time 0.025 seconds

Prediction of Spring-in Deformation of Carbon Fiber Reinforced Composite by Thermal Residual Stress (복합재 성형후 열잔류응력에 의한 변형 연구)

  • Kim, Yong-Seung;Kim, Wie-Dae
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.410-415
    • /
    • 2017
  • This paper predicted deformation due to thermal residual stress in composites using finite element analysis. Temperature cycle, Model shape, Laminate angle, Stacking sequence, chemical shrinkage of resin, and thermal expansion are affect composite deformation. Compare the results of the analytical model with the actual model of the same shape. This paper suggests that the analytical results can be applied to actual Model.

Test and Finite Element Analysis on Compression after Impact Strength for Laminated Composite Structures of Unidirectional CFRP (일방향 탄소섬유강화 플라스틱 복합재 적층구조의 충격 후 압축강도 시험 및 유한요소해석)

  • Ha, Jae-Seok
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.321-327
    • /
    • 2016
  • In this study, tests and finite element analyses were performed regarding compression after impact strength for laminated composite structures of unidirectional carbon fiber reinforced plastic widely used in structural materials. Two lay-up sequences of composite laminates were selected as test specimens and four impact energy conditions were applied respectively. Impact and compressive strength tests were conducted in accordance with ASTM standards. Impact damages in test specimens were analyzed by using non-destructive inspection method of C-Scan, and compression after impact strengths were calculated with compressive test results. Progressive failure analysis method that can progressively simulate damages and fractures of fiber/matrix/lamina/laminate level was used for impact and compressive strength analyses. All analysis results including contact force, deflection, impact damages, compressive strengths, etc. were compared to test results, and the validity of analysis method was verified.

Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion (Tan-Cheng 파손기준을 이용한 직물 CFRP 적층판의 원거리 하중에 대한 파괴강도 평가)

  • Kim, Sang-Young;Park, Hong-Sun;Kang, Min-Sung;Lee, Woo-Hyung;Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.360-365
    • /
    • 2009
  • In the manufacture of CFRP(Carbon Fiber Reinforced Polymer Composite) composite structures, various independent components join by bolts and pins. Holes for bolts and pins have an effect on the failure strength of such structures, because those act as notches in structures. The failure characteristic of such structures are different from those of plain plate subject to remote load. In this paper, tensile properties of woven CFRP composite plates with laminates of $0^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were obtained according to ASTM D 3039. By using obtained tensile failure strength and Tan-Cheng failure criterion, tensile failure strength of CFRP laminate with arbitrary fiber angle were evaluated. Also, the degradation of tensile properties by center hole(${\phi}10mm$) with a remote load was evaluated and the failure strengths were applied to Tan's failure criterion, similarly.

A Study on the Impact Damage and Residual Bending Strength of CF/EPOXY Composite Laminate Plates Under High Temperature (고온분위기하에서 탄소섬유강화 복합재적층판의 충격손상과 잔류굽힘강도)

  • 양인영;박정수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1930-1938
    • /
    • 1994
  • In this paper, the effects of temperature change on the impact of CFRP laminates was experimentally studied. Composite laminates used for this experiment are CFRP orthotropic laminated plates, which have two-interfaces$[0_6^{\circ}/90_7^{\circ}]_s$ and four-interfaces$[0_3^{\circ}/90_6^{\circ}/0_3^{\circ}]_s$. The interrelations between the impact energy vs. delamination area, the impact energy vs. residual bending strength, and the interlayer delamination area vs. the decrease of the residual flexural strength of carbon fiber epoxy composite laminates subjected to FOD(Foreign Object Damage) under high temperatures were experimentally observed.

A Study on the Torque Transmission Characteristics of Adhesively Bonded Composite Drive Shafts (접착제로 접합된 복합재료 구동축의 토크 전달특성에 관한 연구)

  • 김원태;김기수;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1980-2000
    • /
    • 1993
  • The stresses and torque transmission capabilities of adhesively bonded circular, hexagonal and elliptical lap joints were analyzed by the finite element and compared with the experimental results. The adherends of the joints were composed of carbon fiber/epoxy composite shafts and steel shafts. In calculating the torque transmission capabilities, the linear laminate properties of the composite material and the nonlinear shear properties of the adhesive were used. Using this method, the torque transmission capabilities of adhesively bonded lap joints could be obtained within 10% error compared to the experimental results except some single lap joints. The experiments revealed that the hexagonal joint had the best torque transmission capability from the single lap joints and the double lap joint had better torque transmission than the single lap joint.

Fatigue Life Prediction of Fiber-Reinforced Composite Materials having Nonlinear Stress/Strain Behavior (비선형 변형 거동을 갖는 섬유강화 복합재료의 피로수명 예측)

  • 이창수;황운봉
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 1999
  • Fatigue life prediction of matrix dominated composite laminates, which have a nonlinear stress/strain response, was studied analytically and experimentally. A stress function describing the relation of initial fatigue modulus and elastic modulus was used in order to consider the material nonlinearty. New modified fatigue life prediction equation was suggested based on the fatigue modulus and reference modulus concept as a function of applied stress. The prediction was verified by torsional fatigue test using crossply carbon/epoxy laminate tubes. It was shown that the proposed equation has wide applicability and good agreement with experimental data.

  • PDF

Tensile Properties of CERP Composite with Different Resin Composition under Cryogenic Temperature (극저온 환경에서 탄소섬유강화 복합재료의 수지조성변화에 따른 인장 물성 측정)

  • Kim, Myung-Gon;Kang, Sang-Guk;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • In this study, carbon fiber reinforced polymeric (CFRP) composites with different resin composition were manufactured and resin formulation in composite materials were presented through tensile tests for cryogenic use. Thermo-mechanical cyclic loading (up to 6 cycles) was applied to CFRP unidirectional laminate specimens from room temperature to $-150^{\circ}C$. Tensile tests were then performed at $-150^{\circ}C$ using an environmental test chamber. In addition, matrix-dominant properties such as the transverse and in-plane shear characteristics of each composite model were measured at $-150^{\circ}C$ to examine the effects of resin formulation on their interfacial properties. The tensile tests showed that the composite models with large amounts of bisphenol-A epoxy and CTBN modified rubber in their resin composition had good mechanical performance at cryogenic temperature (CT).

Design and Properties of Microwave Absorbing Structures Composed of Fiber Reinforced Composites (섬유강화 복합재료로 구성된 전파흡수구조재의 설계 및 특성)

  • 김상영;김성수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.1002-1008
    • /
    • 2001
  • The absorbing structure composed of multi-layered fiber reinforced composite materials was designed and microwave absorbing properties are investigated. On the basis of transmission line theory, the theoretical equations to predict the reflection loss and the appropriate composite material for each functional layer are suggested. The most significant result of this study is the successful design and fabrication of triple-layered composite laminates which has the superior microwave absorbing porperties (more than 10 dB in 4∼12 GHz range), without using the ferrite filler in the impedance transforming layer. In the two-layered composite laminate (absorber/substrate), however, the use of ferrite filler (about 40 wt %) in the absorbing layer is necessary to obtain the certain level of microwave absorbance. By combining the glass-fiber composite with ferrite filler and carbon-fiber composite substrate, the microwave absorbing properties more than 10 dB in 4∼12 GHz frequencies than be obtained.

  • PDF

Microstructure and Mechanical Property Changes of Unidirectional and Plain Woven CF/Mg Composite Laminates after Corrosion (일방향 및 평직 CF/Mg 복합재 적층판의 부식에 따른 미세조직 및 기계적 특성 변화)

  • Yim, Shi On;Lee, Jung Moo;Lee, Sang Kwan;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.697-702
    • /
    • 2012
  • In this study, unidirectional and plain woven carbon fiber reinforced magnesium matrix composite laminates were fabricated by the liquid pressing infiltration process, and evolutions of the microstructure and compressive strength of the composite laminates under corrosion were investigated by static immersion tests. In the case of the unidirectional composite laminate, the main microstructural damage during immersion appeared as a form of corrosion induced cracks, which were formed at both CF/Mg interfaces and the interfaces between layers. On the otherhand, wrap/fill interface cracks were mainly formed in the plain woven composite laminate, without any cracks at the CF/Mg interface. The formation of these cracks was considered to be associated with internal thermal residual stress, which was generated during cooling after the fabrication process of these materials. As a consequence of the corrosion induced cracks, the thickness of both laminates increased in directions vertical to the fibers with increasing immersion time. With increasing immersion time, the compressive strengths of both composite laminates also decreased continuously. It was found that the plain woven composite laminates have superior corrosion resistance and stability under a corrosive condition than unidirectional laminates.

AE Application for Fracture Behavior of SiC Reinforced CFRP Composites (SiC 강화 CFRP 복합재의 파괴거동에 관한 음향방출 적용)

  • Ryu, Yeong Rok;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.16-21
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic(CFRP) composite with a higher specific strength and rigidity is more excellent than conventional metallic materials or other organic polymer of FRP. It has been widely used in vehicles, aerospaces and high technology industries which are associated with nuclear power fields. However, CFRP laminated composite has several disadvantages as like a delamination, matrix brittleness and anisotropic fibers that are the weak points of the crack initiation. In this present work, the reinforced silicon carbide(SiC) particles were added to the interlayer of CFRP laminates in order to mitigate the physical vulnerability affecting the cracking and breaking of the matrix in the CFRP laminated composite because of excellent specific strength and thermal shock resistance characteristics of SiC. The 1wt% of SiC particles were spread into the CFRP prepreg by using a spray coating method. After that, CFRP prepregs were laminated for the specimen. Also, the twill woven type CFRP prepreg was used because it has excellent workability. Thus the mechanical and fracture behaviors of the twill woven CFRP laminated composite reinforced with SiC particles were investigated with the acoustic emission(AE) method under a fracture test. The results show that the SiC particles enhance the mechanical and fracture characteristics of the twill CFRP laminate composite.