• Title/Summary/Keyword: Carbon encapsulated Ni (Ni@C)

Search Result 4, Processing Time 0.02 seconds

Magnetic Properties and Application of Caltalysts in Biginelli Reaction for the Ni and Ni@C Synthesized by Levitational Gas Condensation (LGC) (부양증발응축법으로 제조된 Ni과 Ni@C의 자성특성 및 Biginelli 합성 촉매 적용연구)

  • Uhm, Young Rang
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.87-91
    • /
    • 2017
  • Carbon-encapsulated Ni and metal Ni nanoparticles were synthesized by levitational gas condensation (LGC). Methane ($CH_4$) gas was used to coat the surface of the Ni nanoparticles. The Ni particles had a core diameter of 10 nm, and were covered by 2~3 nm thin carbon layers with multi-shells structure.The low magnetization comparing with the Ni nanoparticles without carbon-shell results in the coexistence of nonmagnetic carbon and a large surface spin percentage with disordered magnetization orientation for the nanoparticles. Biginelli reactions in the presence of L-proline and Ni and carbon encapsulated Ni nanoparticles were carried out to change the ratio between stereoisomers. The obtained S-enantiomers for 3,4-dihydropyrimidine (DHPM) using catalysts of Ni, and Ni@C was an excess of about ${\Delta}{\sim}7.4%$ and ${\Delta}{\sim}19.6%$, respectively. The nanopowders were fully recovered using magnet to reuse as a catalyst. The Ni@C was shown at same yield to formation of 3,4-DHPM, though it was recycled for catalyst in the reaction.

Carbon-Encapsulated Ni Catalysts for CO2 Methanation (탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응)

  • Kim, Hye Jeong;Kim, Seung Bo;Kim, Dong Hyun;Youn, Jae-Rang;Kim, Min-Jae;Jeon, Sang Goo;Lee, Gyoung-Ja;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

Characterization and Electrical Conductivity of Carbon-Coated Metallic (Ni, Cu, Sn) Nanocapsules

  • Wang, Dong Xing;Shah, Asif;Zhou, Lei;Zhang, Xue Feng;Liu, Chun Jing;Huang, Hao;Dong, Xing Long
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.236-241
    • /
    • 2015
  • Carbon-coated Ni, Cu and Sn nanocapsules were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and a four-point probe device. All of these nanocapsules were prepared by an arc-discharge method, in which the bulk metals were evaporated under methane ($CH_4$) atmosphere. Three pure metals (Ni, Cu, Sn) were typically diverse in formation of the carbon encapsulated nanoparticles and their different mechanisms were investigated. It was indicated that a thick carbon layers formed on the surface of Ni(C) nanocapsules, whereas a thin shell of carbon with 1~2 layers covered on Cu(C) nanocapsules, and the Sn(C) nanocapsules was, in fact, a longger multi-walled carbon nanotubes partially-filled with metal Sn. As one typical magnetic/dielectric nanocomposite particles, Ni(C) nanocapsules and its counterpart of oxide-coated Ni(O) nanocapsules were compared in the electrically conductive behaviors for further applications as the electromagnetic materials.

Catalyst effect on the structure and growth of carbon nanotube by chemical vapor deposition (CVD 에 의한 탄소나노튜브의 구조 및 성장에 대한 촉매금속의 영향)

  • Son, Kwon-Hee;Lee, Tae-Jae;Lyu, Seung-Chul;Choi, Sung-Hun;Lee, Cheol-Jin;Yoo, Jae-Eun;Kim, Seong-Jeen
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1628-1630
    • /
    • 2000
  • Vertically aligned multiwalled carbon nanotubes are grown on silicon oxide substrate at 950$^{\circ}C$ by thermal chemical vapor deposition using $C_{2}H_2$. Three catalytic metals such as iron(Fe), cobalt (Co), and nickel(Ni) are used as catalyst, we found that the growth rate of carbon nanotubes for three catalyst particles are in an order of Fe > Ni > Co. All carbon nanotubes are revealed to have bamboo structure with no encapsulated catalytic particles, the diameter of carbon nanotubes depend on the catalyst, the tip and the compartment sheets of bamboo structure also depend on the shape of catalytic particles.

  • PDF