• Title/Summary/Keyword: Carbon dynamic

Search Result 544, Processing Time 0.024 seconds

ALE Finite Element Analysis of the WIG Craft under the Water Impact Loads (ALE 유한 요소법을 적용한 위그선의 착수하중 해석)

  • Lee, Bok-Won;Kim, Chun-Gon;Park, Mi-Young;Jeong, Han-Koo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1082-1088
    • /
    • 2007
  • Demand for high speed sea transportation modes has been increased dramatically last few decades. The WIG(Wing-in-ground effect) is considered as next generation maritime transportation system. In the structural design of high speed marine vessels, an estimation of water impact loads is essential. The dynamic structural responses of the WIG excited by the water impact loads may bring an important contribution to their damage process. The work presented in this paper is focused on the numerical simulation of the water impact on the WIG craft when it lands. It is aimed to study the structural responses of the WIG craft subjected to the water impact loads. The Arbitrary Lagrangian-Eulerian (ALE) finite element method is used to simulate the water impact of the WIG craft during a landing phase. A full 3D shell element is used to model the WIG craft in carbon composites, and a developed FE model is used to investigate the effect of the water impact loads on the structural responses of the WIG craft. In the analysis, two different landing scenarios are considered and their effects on the structural responses are investigated.

Optimal Structural Design and Fatigue Analysis of Radius Rod by Response Surface Method (반응표면법에 의한 레디어스로드 최적구조설계 및 피로해석)

  • Park, Sohyeon;Kim, Eunsung;Oh, Sangyeob;Yu, Hyosun;Yang, Sungmo;Kim, YongKwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 2014
  • This paper aims to obtain the effect of lightweight on Radius rod. The response surface method used in the paper is the statistical method. Optimization method is performed with the Radius rod using the lightweight material. Structural analysis is executed by using the ANSYS program to find static and dynamic responses. From this study result, it is verified that the response surface method has the advantage of optimum value in comparison with other optimization methods. The analysis is also performed by response surface method to derive optimal design values. Steel model and aluminium initial model are obtained by finite element analysis to clarify design criteria and the results are compared with three models each other. The weights can be reduced by optimal design analysis results of these models similar to those of existing products. The quantitative goals in this study can also attained through results of fatigue analyses. The reliability on optimal design of Radius rod can be improved by use of structural and fatigue analysis results.

Soft-$golf^{TM}$ Shaft Kick Point and Stiffness due to the Difference in Performance Analysis (소프트 골프 샤프트의 킥 포인트와 강성의 차이에 따른 성능 분석)

  • Oh, H.Y.;Yu, M.;Kim, S.H.;Jang, J.H.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.227-233
    • /
    • 2010
  • This study analyzed performance according to kick point and stiffness of Soft-$golf^{TM}$ shaft. This research team developed soft-$golf^{TM}$ as a new fusion sports with similar motions with golf and it can be learned safely for all age groups in 2002. The head of Soft-$golf^{TM}$ club is made of zinc alloy and has a mesh or a grid structure, and shaft uses carbon graphite to reduce the total weight of the club. To improve carry distance and to assure consistency of a ball during Soft-$golf^{TM}$ swing, this study manufactured shaft with various kick points (low, middle and high) and stiffness (stiff, regular, lady, morelady) and analyzed a swing motion with characteristics of each shaft presented in a dynamic condition such as a ball's speed, a head's torsion angle and a ball's deviation with ProAnalyst program through a high-speed camera taking pictures using a swing machine robot system(Robo-7). From all of the results, this study determined an appropriate shaft of Soft-$golf^{TM}$.

Ultra-Low Powered CNT Synaptic Transistor Utilizing Double PI:PCBM Dielectric Layers (더블 PI:PCBM 유전체 층 기반의 초 저전력 CNT 시냅틱 트랜지스터)

  • Kim, Yonghun;Cho, Byungjin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.590-596
    • /
    • 2017
  • We demonstrated a CNT synaptic transistor by integrating 6,6-phenyl-C61 butyric acid methyl ester(PCBM) molecules as charge storage molecules in a polyimide(PI) dielectric layer with carbon nanotubes(CNTs) for the transistor channel. Specifically, we fabricated and compared three different kinds of CNT-based synaptic transistors: a control device with $Al_2O_3/PI$, a single PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%), and a double PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%)/PI:PCBM(0.05 wt%). Statistically, essential device parameters such as Off and On currents, On/Off ratio, device yield, and long-term retention stability for the three kinds of transistor devices were extracted and compared. Notably, the double PCBM device exhibited the most excellent memory transistor behavior. Pulse response properties with postsynaptic dynamic current were also evaluated. Among all of the testing devices, double PCBM device consumed such low power for stand-by and its peak current ratio was so large that the postsynaptic current was also reliably and repeatedly generated. Postsynaptic hole currents through the CNT channel can be generated by electrons trapped in the PCBM molecules and last for a relatively short time(~ hundreds of msec). Under one certain testing configuration, the electrons trapped in the PCBM can also be preserved in a nonvolatile manner for a long-term period. Its integrated platform with extremely low stand-by power should pave a promising road toward next-generation neuromorphic systems, which would emulate the brain power of 20 W.

An Overview of Different Techniques on the Microbial Community Structure, and Functional Diversity of Plant Growth Promoting Bacteria

  • Kim, Kiyoon;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Denver, Walitang;Chanratan, Mak;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.144-156
    • /
    • 2016
  • Soil is a dynamic biological system, in which it is difficult to determine the composition of microbial communities. Knowledge of microbial diversity and function in soils are limited because of the taxonomic and methodological limitations associated with studying the organisms. In this review, approaches to measure microbial diversity in soil were discussed. Research on soil microbes can be categorized as structural diversity, functional diversity and genetic diversity studies, and these include cultivation based and cultivation independent methods. Cultivation independent technique to evaluate soil structural diversity include different techniques such as Phospholipid Fatty Acids (PLFA) and Fatty Acid Methyl Ester (FAME) analysis. Carbon source utilization pattern of soil microorganisms by Community Level Physiological Profiling (CLPP), catabolic responses by Substrate Induced Respiration technique (SIR) and soil microbial enzyme activities are discussed. Genetic diversity of soil microorganisms using molecular techniques such as 16S rDNA analysis Denaturing Gradient Gel Electrophoresis (DGGE) / Temperature Gradient Gel Electrophoresis (TGGE), Terminal Restriction Fragment Length Polymorphism (T-RFLP), Single Strand Conformation Polymorphism (SSCP), Restriction Fragment Length Polymorphism (RFLP) / Amplified Ribosomal DNA Restriction Analysis (ARDRA) and Ribosomal Intergenic Spacer Analysis (RISA) are also discussed. The chapter ends with a final conclusion on the advantages and disadvantages of different techniques and advances in molecular techniques to study the soil microbial diversity.

Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade (10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구)

  • Kim, Soo-Hyun;Shin, Hyungki;Bang, Hyung-Joon
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.369-374
    • /
    • 2016
  • In this study, a structural optimal design of 10 MW composite blade was performed using bend-twist coupled(BTC) design concept. Bend-twist coupling of blade means the coupling behavior between the bending and torsional deflections due to the composite lamina with fiber angle biased from the blade longitudinal axis. This can potentially improve the overall performance of composite blade and reduce the dynamic loading. Parametric studies on layup angle, thickness and area of off-axis carbon UD were conducted to find the optimum coupling effect with weight reduction. Comparing the results of fatigue load analysis between conventional model and BTC applied model, the damage equivalent load(DEL) of blade root area were decreased about 3% in BTC model. To verify the BTC effect experimentally, a 1:29 scaled model was fabricated and the torsion at the tip under deflection behavior of blade stiffener model was measured by static load test.

Finite element development of a Beam-column connection with CFRP sheets subjected to monotonic and cyclic loading

  • Rahimipour, Arash;Hejazi, Farzad;Vaghei, Ramin;Jaafar, Mohd Saleh
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1083-1096
    • /
    • 2016
  • Beam-column joints are recognized as the weak points of reinforcement concrete frames. The ductility of reinforced concrete (RC) frames during severe earthquakes can be measured through the dissipation of large energy in beam-column joint. Retrofitting and rehabilitating structures through proper methods, such as carbon fiber reinforced polymer (CFRP), are required to prevent casualties that result from the collapse of earthquake-damaged structures. The main challenge of this issue is identifying the effect of CFRP on the occurrence of failure in the joint of a cross section with normal ductility. The present study evaluates the retrofitting method for a normal ductile beam-column joint using CFRP under monotonic and cyclic loads. Thus, the finite element model of a cross section with normal ductility and made of RC is developed, and CFRP is used to retrofit the joints. This study considers three beam-column joints: one with partial CFRP wrapping, one with full CFRP wrapping, and one with normal ductility. The two cases with partial and full CFRP wrapping in the beam-column joints are used to determine the effect of retrofitting with CFRP wrapping sheets on the behavior of the beam-column joint confined by such sheets. All the models are subjected to monotonic and cyclic loading. The final capacity and hysteretic results of the dynamic analysis are investigated. A comparison of the dissipation energy graphs of the three connections shows significant enhancement in the models with partial and full CFRP wrapping. An analysis of the load-displacement curves indicates that the stiffness of the specimens is enhanced by CFRP sheets. However, the models with both partial and full CFRP wrapping exhibited no considerable improvement in terms of energy dissipation and stiffness.

Induction by Carvone of the Polychlorinated Biphenyl (PCB)-Degradative Pathway in Alcaligenes eutrophus H850 and Its Molecular Monitoring

  • Park, Young-In;So, Jae-Seong;Koh, Sung-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.804-810
    • /
    • 1999
  • There is a possibility that carvone, a monoterpene from spearmint (Mentha spicata), could induce the bph degradative pathway and genes in Alcaligenes eutrophus H850, which is a known Gram-negative PCB degrader with a broad substrate specificity that was thoroughly investigated with Arthrobacter sp. BIB, a Gram-positive PCB degrader. The strains BIB and H850 were unable to utilize and grow on the plant terpene [(R)-(-)-carvone] (50ppm) to be recognized as a sole carbon source. Nevertheless, the carvone did induce 2,3-dihydroxybiphenyl 1,2-dioxygenase (encoded by bphC) in the strain B lB, as observed by a resting cell assay that monitors accumulation of a yellow meta ring fission product from 4,4'-dichlorobiphenyl (DCBp). The monoterpene, however, did not appear to induce the meta cleavage pathway in the strain H850. Instead, an assumption was made that the strain might be using an alternative pathway, probably the ortho-cleavage pathway. A reverse transcription (RT)-PCR system, utilizing primers designed from a conserved region of the bphC gene of Arthrobacter sp. M5, was employed to verify the occurrence of the alternative pathway. A successful amplification (182bp) of mRNA transcribed from the N-terminal region of the bphC gene was accomplished in H850 cells induced by carvone (50ppm) as well as in biphenyl-growth cells. It is, therefore, likely that H850 possesses a specific PCB degradation pathway and hence a different substrate specificity compared with B1B. This study will contribute to an elucidation of the dynamic aspects of PCB bioremediation in terms of roles played by PCB degraders and plant terpenes as natural inducer substrates that are ubiquitous and environmentally compatible.

  • PDF

Influence of Discharge Voltage-Current Characteristics on CO2 Reforming of Methane using an Elongated Arc Reactor (신장 아크 반응기를 이용한 메탄 CO2 개질반응에서 방전 전압-전류특성의 영향)

  • Kim, Kwan-Tae;Hwang, Na-Kyung;Lee, Jae-Ok;Lee, Dae-Hoon;Hur, Min;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.683-689
    • /
    • 2010
  • Reforming of methane with carbon dioxide has been carried out using a bipolar pulse driven elongated arc reactor operating at atmospheric pressure and non-equilibrium regime. This plasma reactor is driven by two kinds of power supply, characterized by different voltage-current characteristics under the same operating power and frequency. Varying the $CO_2/CH_4$ ratio and the discharge power, the conversion rate, yield, and reforming efficiency for the two power supplies are investigated in conjunction with the static and dynamic behaviors of voltage and current. It is found that not only the values of voltage and current but also their shapes give an influence on the reforming performances. Finally, a better electrical operation regime for the efficient plasma reforming is proposed based on the relationship between the voltage-current characteristics and the reforming performance.

Impacts of green technologies in distribution power network

  • Suwanapingkarl, Pasist;Singhasathein, Arnon;Phanthuna, Nattaphong;Boonthienthong, Manat;Srivallop, Kwanchanok;Ketken, Wannipa
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.90-100
    • /
    • 2015
  • Green technologies such as renewable energy resources, Electric Vehicles and Plug-in Hybrid Electric Vehicles (EVs/PHEVs), electric locomotives, etc. are continually increasing at the existing power network especially distribution levels, which are Medium Voltage (MV) and Low Voltage (LV). It can be noted that the increasing level of green technologies is driven by the reduction emission policies of carbon dioxide ($CO_2$). The green technologies can affect the quality of power, and hence its impacts of are analysed. In practical, the environment such as wind, solar irradiation, temperature etc. are uncontrollable, and therefore the output power of renewable energy in that area can be varied. Moreover, the technology of the EVs/PHEVs is still developed in order to improve the performance of supply and driving systems. This means that these developed can cause harmonic distortion as the control system is mostly used power electronics. Therefore, this paper aims to analyse the voltage variation and harmonic distortion in distribution power network in urban area in Europe due to the combination between wind turbine, hydro turbine, photovoltaic (PV) system and EVs/PHEVs. More realistic penetration levels of SSDGs and EVs/PHEVs as forecasted for 2020 is used to analyse. The dynamic load demands are also taken into account. In order to ensure the accurate of simulation results, the practical parameters of distribution system are used and the international standards such as Institute of Electrical and Electronics Engineers (IEEE) standards are also complied. The suggestion solutions are also presented. The MATLAB/Simulink software is chosen as it can support complicate modelling and analysis.