• Title/Summary/Keyword: Carbon conversion

Search Result 718, Processing Time 0.023 seconds

Methodology of the Fuel Conversion Project and Analysis of the Offset System of the Greenhouse Gas Emission Trading System (연료 전환 사업의 방법론과 온실가스 배출권거래제 상쇄제도 분석)

  • Kim, Eok yong;Shin, Min chang;Park, Jeong hoon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.478-485
    • /
    • 2022
  • The certification performance issued through an external business is sold to companies subject to the emission trading system allocation, and the company subject to the allocation can secure the quota by converting the purchased external business certification performance into offset credits. In this methodology, when fossil fuels that used existing oil boilers (by oil type) were replaced with boilers using propane gas with a relatively low carbon content, the amount of carbon dioxide emission reduction by oil type was recognized. As an initial analysis to make up for the insufficient quota of large corporations, the amount of carbon reduction emissions and emission rights trading was calculated.

Reaction Rates for the Oxidation of Pitch based Carbon Fibers in Air and Carbon Dioxide Gas

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • v.4 no.4
    • /
    • pp.185-191
    • /
    • 2003
  • Two types of carbon fiber based high modulus- and isotropic-pitch were exposed to isothermal oxidation in air and $CO_2$ gas and the weight change was measured by TGA apparatus. The kinetic equation was introduced $f=1-{\exp}(-at^b)$ and the constant b was obtained in the range of 1.02~1.68 for the isotropic fiber and obtained 0.91~1.93 for the high modulus fiber respectively. In considering the effect of the atmosphere for isothermal oxidation, the value of the constant b obtained in the carbon dioxide was higher than that obtained in the air. Therefore, it was found that the pitch based carbon fiber shows sigmoidal characteristic when it is oxidized in the carbon dioxide. In addition, it was also found that $k_f = 0.5$, which was reaction constant at f = 0.5, was a very useful parameter for evaluation of the oxidation reactivity of pitch based carbon fibers. According to the consideration, it is suggested that the conversion-time curves of the pitch based carbon fibers are correlated by normalized equation $f=1-{\exp}(-A{\tau}^B)$, where ${\tau}=t/t_f= 0.5$.

  • PDF

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

Landuse and Landcover Change and the Impacts on Soil Carbon Storage on the Bagmati Basin of Nepal

  • Bastola, Shiksha;Lim, Kyuong Jae;Yang, Jae Eui;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.33-39
    • /
    • 2019
  • The upsurge of population, internal migration, economic activities and developmental works has brought significant land use and land cover (LULC) change over the period of 1990 and 2010 in the Bagmati basin of Nepal. Along with alteration on various other ecosystem services like water yield, water quality, soil loss etc. carbon sequestration is also altered. This study thus primary deals with evaluation of LULC change and its impact on the soil carbon storage for the period 1990 to 2010. For the evaluation, InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Carbon model is used. Residential and several other infrastructural development activities were prevalent on the study period and as a result in 2010 major soil carbon reserve like forest area is decreased by 7.17% of its original coverage in 1990. This decrement has brought about a subsequent decrement of 1.39 million tons of carbon in the basin. Conversion from barren land, water bodies and built up areas to higher carbon reserve like forest and agriculture land has slightly increased soil carbon storage but still, net reduction is higher. Thus, the spatial output of the model in the form of maps is expected to help in decision making for future land use planning and for restoration policies.

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

A Study of Carbon Monoxide Oxidation on Pt & Pt-Pd Catalysts (귀금속촉매 (Pt, Pd)를 이용한 일산화탄소 산화반응에 관한 연구)

  • 金京林
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1985
  • This study is concerned with the oxidation of carbon monoxide on platinum and platinum-palladium catalysts. Catalysts were made by the impregnation method and flow reactor was used in the catalytic reaction. As for the mixed gases, carbon monoxide concentration varied from 1 to 4% and that of oxygen from 1 to 4%. $N_2$ was used as carrier gas and GHSV varied from 24, 000 $h^{-1} to 60, h^{-1}$. The temperature range was from 200 to $600^\circ$C. It was also taken into consideration that the heat and mass transfer resistance of our catalysts was negligible in the study. Experimental results showed that platinum-palladium catalyst was about 1.5-3.9% superior to platinum catalyst in conversion yield. When we used platinum-palladium catalyst, we observed that carbon monoxide oxidation was found to be 1 st order with respect to carbon monoxide concentration. Activation energy of the catalyst was 23.5 kcal/mol.

  • PDF

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

Synergistic Effect of the MnO Catalyst and Porous Carbon Matrix for High Energy Density Vanadium Redox Flow Battery (고에너지 밀도 바나듐 레독스 흐름 전지를 위한 망간산화물 촉매와 다공성 탄소 기재의 시너지 효과)

  • Kim, Minsung;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.150-155
    • /
    • 2019
  • The carbon electrode was modified through manganese-catalyzed hydrogenation method for high energy density vanadium redox flow battery (VRFB). During the catalytic hydrogenation, the manganese oxide deposited at the surface of the carbon electrode stimulated the conversion reaction from carbon to methane gas. This reaction causes the penetration of the manganese and excavates a number of cavities at electrode surface, which increases the electrochemical activity by inducing additional electrochemically active site. The formation of the porous surface was confirmed by the scanning electron microscopy (SEM) images. Finally, the electrochemical performance test of the electrode with the porous surface showed lower polarization and high reversibility in the cathodic reaction compared to the conventional electrode.

Effect of Graphitic Nanofibers on Interfacial Adhesion and Fracture Toughness of Carbon Fibers-reinforced Epoxy Composites

  • Kim, Seong-Hwang;Park, Soo-Jin
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.82-87
    • /
    • 2021
  • The mechanical properties of carbon fiber-reinforced epoxy composites (CFRPs) are greatly dependent on the interfacial adhesion between the carbon fibers and the epoxy matrix. Introducing nanomaterial reinforcements into the interface is an effective approach to enhance the interfacial adhesion of CFRPs. The main purpose of this work was to introduce graphitic nanofiber (GNFs) between an epoxy matrix and carbon fibers to enhance interfacial properties. The composites were reinforced with various concentrations of GNFs. For all of the fabricated composites, the optimum GNF content was found to be 0.6 wt%, which enhanced the interlaminar shear strength (ILSS) and fracture toughness (KIC) by 101.9% and 33.2%, respectively, compared with those of neat composites. In particular, we observed a direct linear relationship between ILSS and KIC through surface free energy. The related reinforcing mechanisms were also analyzed and the enhancements in mechanical properties are mainly attributed to the interfacial interlocking effect. Such an effort could accelerate the conversion of composites into high performance materials and provide fundamental understanding toward realizing the theoretical limits of interfacial adhesion and mechanical properties.

Characteristic analysis of mortar using desulfurization gypsum and carbon dioxide conversion capture materials as a cement admixture (탈황석고와 탄산화물을 혼합재로 사용한 모르타르의 특성 분석)

  • Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Keum-Dan Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.86-91
    • /
    • 2024
  • In this study, the characteristics of mortar using carbondioxide conversion capture materials (CCMs), fabricated by reacting CO2 with desulfurization gypsum (DG) by-produced from a oil refinery, as a cement mixture. Based on the chemical component and particle size analysis results, it estimated that desulfurized gypsum reacted with carbon dioxide to produce carbonate crystals such as CaCO3. Using CCMs as a cement mixture, physical property and durability analysis were conducted by measuring such as workability, compressive strength, compressive strength ratio after freezing-thawing and accelerated carbonation depth. The experimental results showed that as the content of the admixture increased, workability and compressive strength characteristics decreased. Compressive strength after freezing-thawing and accelerated carbonation depth also showed similar characteristics to the physical property measurement results. In addition, compared to desulfurized gypsum, using CCMs showed better physical properties and durability. This was assumed to be due to differences in the crystal phases of the mixed materials such as free-CaO and CaCO3.