• 제목/요약/키워드: Carbon ceramic composite

검색결과 155건 처리시간 0.024초

적층 복합재료를 사용한 곡면형 작동기의 성능 예측을 위한 대규모 수치해석 연구 (Large Scale Numerical Analysis for the Performance Prediction of Multilayered Composite Curved Actuator)

  • 정순완;황인성;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.167-170
    • /
    • 2003
  • In this paper, the electromechanical displacements of curved actuators using laminated composites are calculated by finite element method to design the optimal configuration of curved actuators. To predict the pre-stress in the device due to the mismatch in coefficients of thermal expansion, the carbon-epoxy and glass- epoxy as well as PZT ceramic is also numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers causes the numbers of degree of freedom to increase, large-scale structural analyses are performed in a cluster system in this study. The curved shape and pre-stress in the actuator are obtained by the cured curvature analysis. The displacement under the piezoelectric force by an applied voltage is also calculated to compare the performance of curved actuator. The thickness of composite is chosen as design factor.

  • PDF

Evaluation of the Influence of Pyrolysis Temperature on the Electrical Heating Properties of Si-O-C Fiber

  • Sanghun Kim;Seong-Gun Bae;Bum-Mo Koo;Dong-Geun Shin;Yeong-Geun Jeong
    • Composites Research
    • /
    • 제37권4호
    • /
    • pp.330-336
    • /
    • 2024
  • Silicon carbide (SiC) fibers exhibit excellent heat and chemical resistance at high temperatures. In this study, polycarbosilane melt spinning, oxidation curing, and pyrolysis were performed to fabricate amorphous SiC fibers, and their resistance heating characteristics were evaluated. A stick-type amorphous silicon carbide fiber heating element was manufactured, and the resistance was measured using the two-point probe method. The structural, electrical, and heating characteristics were evaluated at different pyrolysis temperatures. The fiber produced at 1300℃ displayed the highest conductivity and the maximum heating compared to the fibers produced at 1200℃ and 1400℃. This may be attributed to difference in the structures of the fibers, particularly the SiC and graphitic carbon structures.

Energy-controlled Micro Electrical Discharge Machining for an Al2O3-carbon Nanotube Composite

  • Ha, Chang-seung;Son, Eui-Jeong;Cha, Ju-Hong;Kang, Myung Chang;Lee, Ho-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2256-2261
    • /
    • 2017
  • Carbon nanotube (CNT) and alumina ($Al_2O_3$) are synthesized into hybrid composites, and an advanced electrical discharge machining (EDM) system is developed for the machining of hard and conductive materials. CNT nanoparticles are mixed with $Al_2O_3$ powder and the $Al_2O_3$/CNT slurry is sintered by spark plasma. The hardness and the electrical conductivity of the $Al_2O_3$/CNT hybrid composite were investigated. The electrical discharge is controlled by a capacitive ballast circuit. The capacitive ballast circuit is applied to the tungsten carbide and the $Al_2O_3$/CNT hybrid composite. The voltage-current waveforms and scanning electron microscope (SEM) images were measured to analyze the characteristics of the boring process. The developed EDM process can manufacture the ceramic based hybrid composites, thereby expecting the variety of applications.

Sol-gel 법으로 합성된 SiC-C 복합분말을 사용하여 제조된 Si-SiC의 기계적 특성 및 전기저항 특성 (Mechanical and Electrical Properties of Si-SiC Fabricated Using SiC-C Composite Powders Synthesized by Sol-gel Process)

  • 윤성일;조경선;염미래;임대순;박상환
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.459-465
    • /
    • 2014
  • In this study, Si-SiC composites were fabricated using a Si melt infiltration method using ${\beta}$-SiC/C composite powders synthesized by the carbothermal reduction of $SiO_2-C$ precursors made from a TEOS and a phenol resin. The purity of the synthesized SiC-C composite powders was higher than 99.9993 wt% and the average particle size varied from 4 to $6{\mu}m$ with increasing carbon contents of the $SiO_2-C$ precursors. It was found that the Si-SiC composites fabricated in this study consist of ${\beta}$-SiC and residual Si, without any trace of ${\alpha}$-SiC. The 3-point bending strengths of the fabricated Si-SiC composites were measured and found to be higher than 550 MPa, although the density of the fabricated Si-SiC composite was less than $2.9g/cm^3$. The bending strengths and the densities of the fabricated Si-SiC composites were found to decrease with increasing C/Si mole ratios in the SiC-C composite powders. The specific resistivities of the Si-SiC composites fabricated using the SiC-C composite powders were less than $0.018{\Omega}cm$. With increasing C content in the SiC-C composite powders used for the fabrication of Si-SiC composites, the specific resistivity of the Si-SiC composites was found to slightly increase from 0.0157 to $0.018{\Omega}cm$.

탄소섬유 강화 탄화규소 세라믹 복합소재 초음속 재생냉각 연소기 개발 (Development of regenerative scramjet combustor with carbon fiber reinforced ceramic matrix composites)

  • 김세영;김수현;한인섭;우상국;성영훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.232-235
    • /
    • 2017
  • 초음속 스크램제트 연소기는 약 2000K 이상의 고온과 빠른 유속을 가지는 연소 환경에 노출되며 현재 inconel 등의 고온 금속 소재를 적용하고 있다. 이러한 금속소재는 1000K 이상의 고온 환경에서 물성 저하 현상이 크게 나타나 장시간 및 재사용이 불가능하다. 이에 본 연구에서는 차세대 고온 내열 소재로 주목 받는 섬유강화 세라믹 복합소재를 스크램제트 연소기에 적용하기 위한 연구를 수행 하였으며, 연소효율 향상을 위해 고온의 연료를 분사할 수 있는 재생냉각형 연소기 제조를 위한 기초 기술을 개발 하였다.

  • PDF

Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode

  • Kim, Jin Koo;Park, Gi Dae;Kang, Yun Chan
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.65-70
    • /
    • 2019
  • Simple fabrication of a powdered Ge-reduced graphene oxide (Ge-rGO) composite via spray pyrolysis and reduction is introduced herein. Successful incorporation of the rGO nanosheets with Ge hindered the aggregation of Ge and conferred enhanced structural stability to the composite by alleviating the mechanical stress associated with drastic volume changes during repeated cycling. The Li-ion storage performance of Ge-rGO was compared with that of powdered Ge metal. The reversible discharge capacity of Ge-rGO at the $200^{th}$ cycle was $748mA\;h\;g^{-1}$ at a current density of $1.0A\;g^{-1}$ and Ge-rGO showed a capacity of $375mA\;h\;g^{-1}$ even at a high current density of $5.0A\;g^{-1}$. The excellent performance of Ge-rGO is attributed to the structural robustness, enhanced electrical conductivity, and formation of open channels between the rGO nanosheets, which facilitated electrolyte penetration for improved Li-ion diffusion.

Characterization of NiFe2O4/Ce0.9Gd0.1O1.95 composite as an oxygen carrier material for chemical looping hydrogen production

  • Jong Ha Hwang;Ki-Tae Lee
    • Journal of Ceramic Processing Research
    • /
    • 제21권2호
    • /
    • pp.148-156
    • /
    • 2020
  • We investigated NiFe2O4/Ce0.9Gd0.1O1.95 (GDC) composites as oxygen carrier materials for chemical looping hydrogen production (CLHP). CLHP is a promising technology to simultaneously capture carbon dioxide and produce hydrogen from fossil fuels. We found that increasing GDC content increased the amount of the hydrogen production of NiFe2O4/GDC composites. Moreover, the oxygen transfer rate for the re-dox reaction increased significantly with increasing GDC content. GDC may affect the reaction kinetics of NiFe2O4/GDC composites. The finely dispersed GDC particles on the surface of NiFe2O4 can increase the surface adsorption of reaction gases due to the oxygen vacancies on the surface of GDC, and enlarge the active sites by suppressing the grain growth of NiFe2O4. The NiFe2O4/15wt% GDC composite showed no significant degradation in the oxygen transfer capacity and reaction rate during several re-dox cycles. The calculated amount of hydrogen production for the NiFe2O4/15wt% GDC composite would be 2,702 L/day per unit mass (kg).

Fe3O4 Nanoparticles on MWCNTs Backbone for Lithium Ion Batteries

  • Lee, Kangsoo;Shin, Seo Yoon;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.376-380
    • /
    • 2016
  • A composite electrode made of iron oxide nanoparticles/multi-wall carbon nanotube (iNPs/M) delivers high specific capacity and cycle durability. At a rate of $200mAg^{-1}$, the electrode shows a high discharge capacity of ${\sim}664mAhg^{-1}$ after 100 cycles, which is ~ 70% of the theoretical capacity of $Fe_3O_4$. Carbon black, carbon nanotube, and graphene as anode materials have been explored to improve the electrical conductivity and cycle stability in Li ion batteries. Herein, iron oxide nanoparticles on acid treated MWCNTs as a conductive platform are combined to enhance the drawbacks of $Fe_3O_4$ such as low electrical conductivity and volume expansion during the alloying/dealloying process. Enhanced performance was achieved due to a synergistic effect between electrically 3D networks of conductive MWCNTs and the high Li ion storage ability of $Fe_3O_4$ nanoparticles (iNPs).

Fabrication of Ni-AC/TiO2Composites and their Photocatalytic Activity for Degradation of Methylene Blue

  • Oh, Won-Chun;Son, Joo-Hee;Zhang, Kan;Meng, Ze-Da;Zhang, Feng-Jun;Chen, Ming-Liang
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.1-9
    • /
    • 2009
  • Activated carbon modified with nickel (Ni-AC) was employed the for preparation of Ni-activated carbon/$TiO_2$ (Ni-AC/$TiO_2$) composites. The $N_2$ adsorption data showed that the composites had a decreased surface area compared with pristine AC. This indicated blocking of the micropores on the surface of the AC, which was further supported by observation via SEM. XRD results showed that the Ni-AC/$TiO_2$ composite contained a mixed anatase and rutile phase while the untreated AC/$TiO_2$ contained only a typical single and clear anatase phase. EDX results showed the presence of C, O, and Ti with Ni peaks on the composites of Ni-AC/$TiO_2$. Subsequently, the photocatalytic effects on methylene blue (MB) were investigated. The improved decomposition of MB showed the combined effects of adsorptions and photo degradation. In particular, composites treated with Ni enhanced the photo degradation behaviors of MB.

알루미나 수화물로부터 탄소환원질화법에 의한 질화알루미늄 분말의 합성 (Synthesis of Aluminum Nitride Powder from Aluminum Hydroxide by Carbothermal Reduction-Nitridation)

  • 황진명;정원중;최상욱
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.893-901
    • /
    • 1994
  • In this study, AlN powder of fine particle size and of high purity was synthesized by the carbothermal reduction-nitridation of monodisperse, spherical Al(OH)3 which had been prepared by sol-gel method using Al(O-sec-C4H9)3 as the starting material. Depending on the mixing order and kinds of reducing agents, the optimum condition for the preparation of AlN was determined as follows. AlN single-phase was produced by the carbothermal reduction-nitridation of (1) Benzene-washed Al(OH)3 and the reducing agent, carbon, which was mixed in a ball mill: for 5 hours at 140$0^{\circ}C$ under NH3 atmosphere; (2) The mixture prepared by hydrolysis of alkoxide solution into which carbon had been dispersed beforehand: for 5 hours at 135$0^{\circ}C$ ; (3) Al(OH)3 Poly(furfuryl alcohol) composite powder: for 2.5 hours at 135$0^{\circ}C$; (4) The mixture of Al(OH)3 and polyacrylonitrile: for 5 hours at 140$0^{\circ}C$. Addition of CaF2 increased the nitridation rate when carbon or polyacrylonitrile was used as the reducing agent; but it had no effect on the nitridation rate when furfuryl alcohol was used as the reducing agent.

  • PDF