• Title/Summary/Keyword: Carbon budget

Search Result 120, Processing Time 0.031 seconds

Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake (고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyungseok;Oh, Jungkuk;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.

Study on Evaluation of Carbon Emission and Sequestration in Pear Orchard (배 재배지 단위의 탄소 배출량 및 흡수량 평가 연구)

  • Suh, Sanguk;Choi, Eunjung;Jeong, Hyuncheol;Lee, Jongsik;Kim, Gunyeob;Sho, Kyuho;Lee, Jaeseok
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2016
  • Objective of this study was to evaluate the carbon budget on 40 years old pear orchard at Naju. For carbon budget assessment, we measured the soil respiration, net ecosystem productivity of herbs, pear biomass and net ecosystem exchange. In 2015, pear orchard released about $25.6ton\;CO_2\;ha^{-1}$ by soil respiration. And $27.9ton\;CO_2\;ha^{-1}$ was sequestrated by biomass growth. Also about $12.6ton\;CO_2\;ha^{-1}$ was stored at pruning branches and about $5.2ton\;CO_2\;ha^{-1}$ for photosynthesis of herbs. As a result, 25.6 ton of $CO_2$ per ha is annually released to atmosphere. At the same time about 45.7 ton of $CO_2$ was sequestrated from atmosphere. When it sum up the amount of $CO_2$ release and sequestration, approximately $20.1ton\;CO_2\;ha^{-1}$ was sequestrated by pear orchard in 2015, and it showed no significant differences with net ecosystem exchanges ($17.8ton\;CO_2\;ha^{-1}\;yr^{-1}$) by eddy covariance method with the same period. Continuous research using various techniques will help the understanding of $CO_2$ dynamics in agroecosystem and it can be able to present a new methodology for assessment of carbon budget in woody crop field. Futhermore, it is expected that the this study can be used as the basic data to be recognized as a carbon sink.

A Study on the Carbon Budget in Pinus koreansis Plantation (잣나무 조림지의 탄소수지에 관한 연구)

  • 표재훈;김세욱;문형태
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.129-134
    • /
    • 2003
  • Amounts of CO₂ fixed by net primary production and released by soil respiration were determined on big-cone pine plantation. Net primary production, which was determined by allometric method, was converted into CO₂. CO₂ evolution in forest ecosystems are mainly through soil and root respiration. In order to separate root respiration from soil respiration, root-free sites were made in stand. Litter removal sites were prepared to estimate CO₂ evolution through litter layer. Respiration was measured at every two weeks intervals from April 2001 through April 2002, and soil temperature and soil moisture were measured at the same time. Net primary production of this big-cone pine plantation was 25.7 t·ha/sup -1/·yr/sup -1/. The amount of CO₂ fixed by this plantation was 42.5 t CO₂·ha/sup -1/·yr/sup -1/, The amount of CO₂ released by soil respiration was 5.0 t CO₂·ha/sup -1/·yr/sup -1/. The relative contribution of root respiration and litter layer respiration to total respiration was 46% and 32%, respectively. Net amount of fixed CO₂ was 37.5 t CO₂·ha/sup -1/·yr/sup -1/ in this big-cone pine plantation. From this result, this big-cone pine plantation play a carbon sink source from the atmosphere.

Analysis of Organic Carbon Cycle and Mass Balance in Daecheong Reservoir using Three-dimensional Hydrodynamic and Water Quality Model (3차원 수리·수질 모델을 이용한 대청호 유기탄소 순환 및 물질수지 해석)

  • An, Inkyung;Park, Hyungseok;Chung, Sewoong;Ryu, Ingu;Choi, Jungkyu;Kim, Jiwon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.284-299
    • /
    • 2020
  • Dam reservoirs play a particularly crucial role in processing the allochthonous and the autochthonous dissolved (DOC) and the particulate (POC) organic carbon and in the budget of global carbon cycle. However, the complex physical and biogeochemical processes make it difficult to capture the temporal and spatial dynamics of the DOC and the POC in reservoirs. The purpose of this study was to simulate the dynamics of the DOC and the POC in Daecheong Reservoir using the 3-D hydrodynamics and water quality model (AEM3D), and to quantify the mass balance through the source and sink fluxes analysis. The AEM3D model was calibrated using field data collected in 2017 and showed reasonable performance in the water temperature and the water quality simulations. The results showed that the allochthonous and autochthonous proportions of the annual total organic carbon (TOC) loads in the reservoir were 55.5% and 44.5%, respectively. In season, the allochthonous loading was the highest (72.7%) in summer, while in autumn, the autochthonous loading was the majority (77.1%) because of the basal metabolism of the phytoplankton. The amount of the DOC discharged to downstream of the dam was similar to the allochthonous load into the reservoir. However, the POC was removed by approximately 96.6% in the reservoir mainly by the sedimentation. The POC sedimentation flux was 36.21 g-C/㎡/yr. In terms of space, the contribution rate of the autochthonous organic carbon loading was high in order of the riverine zone, the transitional zone, and the lacustrine zone. The results of the study provide important information on the TOC management in the watersheds with extensive stagnant water, such as dam reservoirs and weir pools.

A study of struvite control using CO2 in sewage treatment process (하수처리공정에서 이산화탄소를 이용한 스트러바이트 제어에 관한 연구)

  • Han, Keumseok;Hong, Seongho;Choi, Youngjune
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.261-268
    • /
    • 2018
  • Sludge transporting pipes in wastewater treatment plant are easy to be clogged with struvite when the digested sludge and dehydrated filtrate are transported through the pipes, which lowers the efficiency of sludge treatment system in a WWTP. pH is one of the most important factors in struvite formation, and carbon dioxide separated from biogas can be used to control pH and struvite formation. By controlling pH, the amount of dehydrating agent can be reduced by about 10%, which saves the budget for facility maintenance. As $CO_2$ is reused and dehydrating chemicals are saved, the approach can contribute to global warming gas reduction.

Opto-Chemical Characteristics of Visibility Impairment Using Semi-Continuous Aerosol Monitoring in an Urban Area during Summertime (에어로졸의 준실시간 관측에 의한 여름철 도시지역 시정 감쇄 현상의 광ㆍ화학적인 특성 분석)

  • 김경원;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.647-661
    • /
    • 2003
  • For continuous monitoring of atmospheric visibility in the city of Kwanaju, Korea, a transmissometer system consisting of a transmitter and a receiver was installed at a distance of 1.91 km across the downtown Kwanaju. At the transmitter site an integrating nephelometer and an aethalometer were also installed to measure the scattering and absorption coefficients of the atmosphere, respectively. At the receiver site. an URG PM$_{2.5}$ cyclone sampler and an URG-VAPS (Versatile Air Pollutant Sampler) with three filter packs and two denuders were used to collect both PM$_{2.5}$ and PM$_{10}$ samples at a 2-hour or 12-hour sampling interval for aerosol chemical analysis. Sulfate, organic mass by carbon (OMC), nitrate, elemental carbon (EC) components of fine aerosol were the major contributors to visibility impairment. Diurnal variation of visibility during best-case days showed rapid improvement in the morning hours, while it was delayed until afternoon during the worst-case days. Aerosol mass concentration of each aerosol component for the worst-case was calculated to be 11.2 times larger than the best-case for (NH$_4$)$_2$SO$_4$(NHSO), 19.0 times for NH$_4$NO$_3$ (NHNO), 2.2 times for OMC, respectively. Also result shows that elemental carbon and fine soil (FS) were 3.7 and 2.2 times more than those of best-case. respectively- Sum of total contributions of wet NHSO and NHNO to light extinction was calculated to be 301 Mm$^{-1}$ for the worst-case. However, sum of contributions by dry NHSO and NHNO was calculated to be 123 Mm$^{-1}$ for the best case. Mass extinction efficiencies of fine and coarse particles were calculated to be 5.8$\pm$0.3 $m^2$/g and 1.8$\pm$0.1 $m^2$/g, respectively.ely.

Distribution of Particulate Organic Matter in the Gampo Upwelling Area of the Southwestern East Sea

  • Yang, Han-Soeb;Oh, Seok-Jin;Lee, Haeng-Pil;Moon, Chang-Ho;Han, Myung-Soo;Kim, Bok-Kee
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.157-167
    • /
    • 1998
  • The distribution of particulate organic carbon and nitrogen (POC and PON) and chlorophyll a of particulate organic matter was investigated in the southwestern East Sea in August and October 1995. The upwelled 'cold water mass' with temperature less than 14$^{\circ}$C occurred near the Campo coast in August. At most of the onshore stations, concentrations of POC and PON were high in surface water, rapidly decreased with depth down to 30 m and then remained constant. Differences in their concentrations between surface and bottom waters were larger in August than in October. At the offshore stations, POC and PON were higher in surface than in deep waters though the differences in concentration were small. The highest, vertically integrated inventories of POC, PON and phytoplanktonic carbon in the upper mixed waters of the onshore stations occurred in August. The mixed layers at onshore stations showed relatively high percentages of POC, PON and chlorophyll a in total suspended matter, low ratios of POC to chlorophyll a and high inventories of phytoplanktonic carbon, compared with the values at offshore stations. These phenomena were more obvious in August, when cold water mass developed strongly, than in October. These results indicate that primary production plays a significant role for the budget of particulate organic matter in the upwelled cold water mass of the southwestern East Sea.

  • PDF

Development of Tree Carbon Calculator to Support Landscape Design for the Carbon Reduction (탄소저감설계 지원을 위한 수목 탄소계산기 개발 및 적용)

  • Ha, Jee-Ah;Park, Jae-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.1
    • /
    • pp.42-55
    • /
    • 2023
  • A methodology to predict the carbon performance of newly created urban greening plans is required as policies based on quantifying carbon performance are rapidly being introduced in the face of the climate crisis caused by global warming. This study developed a tree carbon calculator that can be used for carbon reduction designs in landscaping and attempted to verify its effectiveness in landscape design. For practical operability, MS Excel was selected as a format, and carbon absorption and storage by tree type and size were extracted from 93 representative species to reflect plant design characteristics. The database, including tree unit prices, was established to reflect cost limitations. A plantation experimental design to verify the performance of the tree carbon calculator was conducted by simulating the design of parks in the central region for four landscape design, and the causal relationship was analyzed by conducting semi-structured interviews before and after. As a result, carbon absorption and carbon storage in the design using the tree carbon calculator were about 17-82% and about 14-85% higher, respectively, compared to not using it. It was confirmed that the reason for the increase in carbon performance efficiency was that additional planting was actively carried out within a given budget, along with the replacement of excellent carbon performance species. Pre-interviews revealed that designers distrusted data and the burdens caused by new programs before using the arboreal carbon calculator but tended to change positively because of its usefulness and ease of use. In order to implement carbon reduction design in the landscaping field, it is necessary to develop it into a carbon calculator for trees and landscaping performance. This study is expected to present a useful direction for ntroducing carbon reduction designs based on quantitative data in landscape design.

Biological Pump in the East Sea Estimated by a Box Model (상자 모형으로 추정한 동해의 생물 펌프)

  • Kim, Jae-Yeon;Kang, Dong-Jin;Kim, Eung;Cho, Jin-Hyung;Lee, Chang-Rae;Kim, Kyung-Ryul;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.295-306
    • /
    • 2003
  • Recently efforts are underway to analyze the impacts of anthropogenic $CO_2$ on the global environments and the amount of oceanic uptake increase. The East Sea is now viewed as a miniature ocean because its circulation pattern is similar to the ocean conveyer belt. The biological pump of the East Sea is a vital component to understand the carbon cycle quantitatively. In this paper, the biological pump is estimated utilizing the stoichiometric ratio between carbon and phosphorus. A simple phosphate budget model is constructed based on the seawater and dissolved oxygen box model that can simulate the recent structural change in deep water circulation of the East Sea. A model run from you 1952 to 2040 shows the steadily intensifying biological pump. Currently it exports about 0.016 Pg C yr$^{-1}$ , which corresponds to 35% of the carbon introduced into the seawater by the air-sea exchange. An increased oxygen supply to the central water mass as a result of from the transition in the ventilation system might enhance the remineralization of sinking biogenic particles. This should strengthen the upward nutrient flux into the surface layer. Consequently, the biological sequestration of anthropogenic carbon is expected to increase with time. The estimated biological uptake of the anthropogenic carbon in the East Sea since the Industrial Revolution is estimated as 0.025 Pg C.