DOI QR코드

DOI QR Code

Study on Evaluation of Carbon Emission and Sequestration in Pear Orchard

배 재배지 단위의 탄소 배출량 및 흡수량 평가 연구

  • Suh, Sanguk (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Choi, Eunjung (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Jeong, Hyuncheol (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Lee, Jongsik (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Kim, Gunyeob (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Sho, Kyuho (Climate Change & Agroecology Division, National Institute of Agricultural Sciences) ;
  • Lee, Jaeseok (College of Bioscience and Biotechnology, Konkuk University)
  • 서상욱 (국립농업과학원 기후변화생태과) ;
  • 최은정 (국립농업과학원 기후변화생태과) ;
  • 정현철 (국립농업과학원 기후변화생태과) ;
  • 이종식 (국립농업과학원 기후변화생태과) ;
  • 김건엽 (국립농업과학원 기후변화생태과) ;
  • 소규호 (국립농업과학원 기후변화생태과) ;
  • 이재석 (건국대학교 생명과학과)
  • Received : 2016.11.02
  • Accepted : 2016.11.15
  • Published : 2016.12.31

Abstract

Objective of this study was to evaluate the carbon budget on 40 years old pear orchard at Naju. For carbon budget assessment, we measured the soil respiration, net ecosystem productivity of herbs, pear biomass and net ecosystem exchange. In 2015, pear orchard released about $25.6ton\;CO_2\;ha^{-1}$ by soil respiration. And $27.9ton\;CO_2\;ha^{-1}$ was sequestrated by biomass growth. Also about $12.6ton\;CO_2\;ha^{-1}$ was stored at pruning branches and about $5.2ton\;CO_2\;ha^{-1}$ for photosynthesis of herbs. As a result, 25.6 ton of $CO_2$ per ha is annually released to atmosphere. At the same time about 45.7 ton of $CO_2$ was sequestrated from atmosphere. When it sum up the amount of $CO_2$ release and sequestration, approximately $20.1ton\;CO_2\;ha^{-1}$ was sequestrated by pear orchard in 2015, and it showed no significant differences with net ecosystem exchanges ($17.8ton\;CO_2\;ha^{-1}\;yr^{-1}$) by eddy covariance method with the same period. Continuous research using various techniques will help the understanding of $CO_2$ dynamics in agroecosystem and it can be able to present a new methodology for assessment of carbon budget in woody crop field. Futhermore, it is expected that the this study can be used as the basic data to be recognized as a carbon sink.

본 연구는 영년생 작물 중 배 재배지의 탄소수지 평가를 위하여 전남 나주 욱곡리 배 재배지에서 토양호흡, 초본류의 생태계순생산량 그리고 배 과수의 바이오매스와 배 재배지에서의 생태계순교환량을 측정하였다. 2015년 배 재배지의 연간 토양호흡량은 약 $25.6ton\;CO_2\;ha^{-1}$이었다. 바이오매스 측정을 통해 측정된 배나무 수체에 저장된 $CO_2$ 양은 $(-)27.9ton\;CO_2\;ha^{-1}$이었으며, 전정된 가지에 저장된 $CO_2$ 양은 약 $(-)12.6ton\;CO_2\;ha^{-1}\;yr^{-1}$이었다. 배 재배지 임상 하부에 자생하는 초본류 광합성에 의해 흡수된 $CO_2$ 양은 $(-)5.2ton\;CO_2\;ha^{-1}\;yr^{-1}$이었다. 이를 배 재배지 단위에서의 $CO_2$ 배출량과 흡수량으로 구분하여 보면, 연간 1 ha당 약 25.6 ton이 대기 중으로 배출되었으며 대기로부터 흡수된 $CO_2$는 약 (-)45.7 ton이었다. 이를 합산하면 연간 약 (-)20.1 ton의 $CO_2$가 대기 중으로부터 배 재배지로 흡수되는 것을 확인할 수 있었다. 이는 미기상학적인 방법을 이용하여 측정한 배 재배지 대기와 작물 및 토양권 간의 연간 $CO_2$ 교환량 $(-)17.8ton\;ha^{-1}$와 큰 차이를 보이지 않았다. 이러한 다양한 접근 방법을 이용한 연구는 배 재배지뿐만 아니라 영년생 작물 재배지 단위에서 농업생태계 구성요소들 간의 $CO_2$ 흐름을 파악하여 보다 효율적인 탄소수지 평가 연구를 위한 방법론을 제시하고 향후 농업생태계가 탄소 흡수원으로서 인정받기 위한 후속 연구의 기초 데이터로 사용될 수 있을 것으로 예상된다.

Keywords

References

  1. Baldocchi D. 2008. Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 56:1-26. https://doi.org/10.1071/BT07151
  2. Baldocchi D, E Falge, L Gu, R Olson, D Hollinger, S Running, P Anthoni, Ch Bernhofer, K Davis, R Evans, J Fuentes, A Goldstein, G Katul, B Law, X Lee, Y Malhi, T Meyers, W Munger, W Oechel, UKT Paw, K Pilegaard, HP Schmid, R Valantini, S Verma, T Vesala, K Wilson and S Wofsy. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. J. Clim. 82:2415-2434.
  3. Ball BC, A Scott and JP Parker. 1999. Field $N_2O$, $CO_2$ and $CH_4$ fluxes in relation to tillage, compaction and soil quality I Scotland. Soil & Tillage Research 54:29-39.
  4. Barbara JB. 2000. Age-related changes in photosynthesis of woody plants. Trends in Plant Science 5:349-353. https://doi.org/10.1016/S1360-1385(00)01691-5
  5. Bekku Y, H Koizumi, T Nakadai and H Iwaki. 1995. Measurement of soil respiration using closed chamber method: an IRGA technique. Ecol. Res. 10:369-373. https://doi.org/10.1007/BF02347863
  6. Bond-Lamberty B, C Wang and ST Gower. 2004. Contribution of root respiration to soil surface $CO_2$ flux in a boreal black spruce chronoequence. Tree Physiology 24:1387-1395. https://doi.org/10.1093/treephys/24.12.1387
  7. Heo JH, MJ Yi, BR Kwon and HY Shin. 2014. Soil respiration of coniferous and deciduous stands at Gwangneung arboretum and Taehwa research forest. Proceeding of the Korean forestry society. pp. 156 (in Korean with English abstract).
  8. Hoskin B and R May. 1996. Overview of UK National Strategy for Global Environmental Research-Inter-Agency Committee on Global Environmental Change. Report of Expert Panel.
  9. Intergovernmental Panel on Climate Change (IPCC). 2006. 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental strategies (IGES). Japan.
  10. IPCC. 2007. Climate change 2007: the physical science basis, contribution of working groupI to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press. Cambridge.
  11. Ito D and K Takahashi. 1997. Seasonal changes in soil respiration rate in a mulberry field. J. Agirc Meteorol. 53:209-2015. https://doi.org/10.2480/agrmet.53.209
  12. Jung SH, JH Lee, JH Lim and SD Kim. 2014. Characteristics of annual soil respiration in a pine (P. densiflora) forest. Proceeding of the Korean forestry society. pp. 11 (in Korean with English abstract).
  13. Korean Statistical Information Service (KOSIS). 2010. Agr. Area survey. www.kosis.kr.
  14. Kozlowski TT. 1964. Shoot growth in woody plants. Bot. Rev. 30:335-392. https://doi.org/10.1007/BF02858538
  15. Lee JH. 2008. Effect of carbonization of agricultural product on increasing of carbon sequestration in red pepper soil. Master Thesis. Konkuk University.
  16. Lee JS, S Shu, Y Min, C Chae, J Kim, J Gu, R Park, Y Shon and J Lim. 2005. Carbon budget in temperate deciduous forest in Gwangneung. Kor. Soc. Kor. Soc. Soil Sci. Fert. pp. 287-288.
  17. Lee TK, JJ Choi, JS Kim, HC Lee and HM Ro. 2013. Carbon and nitrogen stocks of trees and soils in a 'Niitaka' pear orchard. Kor. J. Jort. Sci. Technol. 31:828-832.
  18. Lee YJ, YO Seo, SM Park, JK Pyo, RH Kim, YM Son, KH Lee and HH Kim. 2009. Estimation of biomass for 27 years old Korean pine (Pinus koraiensis) plantation in Gangneung, Ganwon-province. Journal of Agriculture & Life Science 43:1-8 (in Korean with English abstract).
  19. NIHHS. 2011. Pear growing techniques. Natl. Ins. of Hort. & Herbal Sci., RDA, Suwon, Korea.
  20. Raich JW and WH Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44:81-99. https://doi.org/10.3402/tellusb.v44i2.15428
  21. Roh HM, JH Choi, SY Lee, TK Lee, JS Kim, JS Park, JJ Choi and MJ Lee. 2015. Annual increase in carbon and nitrogen stocks of trees and soils in a 'Niitaka' pear orchard following standard fertilization recommendations. Kor. J. Hort. Sci. Technol. 33:591-597.
  22. Rosenzweig C and D Hillel. 1998. Climate change and the global harvest. Oxford University Press. New York.
  23. Rural Development Administration (RDA). 2000. Standard farming mannual, pear cultivation. RDA, Suwon, Korea.
  24. Schlesinger WH. 2000. Carbon sequestration in soils: some caution amidst optimism. Agriculture, Ecosystem and Environment 82:121-127. https://doi.org/10.1016/S0167-8809(00)00221-8
  25. Suh S, E Choi, H Jeong, J Lee, G Kim, J Lee and K Sho. 2015. The study on carbon budget assessment in pear orchard. Korean J. Environ. Biol. 33:345-351. https://doi.org/10.11626/KJEB.2015.33.3.345
  26. Suh S, S Park, K Shim, B Yang, E Choi, J Lee and T Kim. 2014. The effect of rain fall event on $CO_2$ emission in Pinus koraiensis plantation in Mt. Taehwa. Korean J. Environ. Biol. 32:389-394. https://doi.org/10.11626/KJEB.2014.32.4.389
  27. Tami K, Y Kominami, T Miyama, Y Goto and Y Ohtani. 2008. Topographical effects on soil respiration in a deciduous forest-The case of weathered granite region in Southern Kyoto Prefecture. J. Agricultural Meteorology 64:512-222. https://doi.org/10.2480/agrmet.64.4.7
  28. Wilson BF. 2000. Apical control of branch growth and angle in woody plants. Am. J. Bot. 87:601-607. https://doi.org/10.2307/2656846