• 제목/요약/키워드: Carbon budget

검색결과 120건 처리시간 0.047초

강우기 및 평수기의 팔당호 유기물 수지산정 (Organic Carbon Budget during Rainy and Dry Period in Paldang Reservoir)

  • 이유희;정동일;박혜경
    • 생태와환경
    • /
    • 제37권3호통권108호
    • /
    • pp.272-281
    • /
    • 2004
  • 팔당호의 유기물 수지 산정을 위해 팔당호내 일차생산력을 측정하고 유입하천의 유입유기물량 및 방류유기물량을 측정하여 유기물부하에서 내부생성유기물의 기여도를 평가하였다. 식물플랑크톤에 의한 일차생산력은 지점과 시기에 따라 큰 차이를 보여 3회 조사결과 $101{\sim}2701\;mgC\;m^{-2}day{-1}$의 범위로 나타났으며, 체류시간이 길고, 수체내 클로로필 a농도가 높았던 6월에 모든 지점에서 높은 생산력을 보였다. 빈번한 강우로 체류시간이 짧고 조류현존량이 적었던 4월과 8월의 조사에서는 총 유기물유입량에서 내부생성유기물량은 약 7%를 차지하였고 이중 식물플랑크톤에 의한 내부생산기여도는 약 5%로 매우 낮았다. 그러나 조사일 전후로 강우가 없어 수체가 안정되었고 외부유입유기물량이 적었던 6월 조사에서는 식물플랑크톤에 의한 내부생산 기여도가 29.0%를 보였다.

Carbon Dioxide Budget in Phragmites communis Stands

  • Ihm, Hyun-Bin;Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Ha-Song
    • The Korean Journal of Ecology
    • /
    • 제24권6호
    • /
    • pp.335-339
    • /
    • 2001
  • The dynamic model was developed to simulate the photosynthetic rate of Phragmites communis stands in coastal ecosystem. The model was composed of the compartments of both climatic and biological variables. The former were photosynthetic photon flux density(PPFD), daily maximum- and minimum-temperature. The latter were combinations of the specific physiological responses of plant organs with the biomass of each organs. The PPFD and air temperature were calculated and using those values, gas exchange rate of each plant organ was calculated at every hour. The carbon budget was constructed using the modelled predictions. Analysis of annual productivity and fluxes showed that yearly gross population productivity, yearly population respiration and yearly net population productivity were 33.4, 21.3 and 12.1 $CO_2ton{\cdot}ha^{-2}{\cdot}yr^{-1}$, respectively. The final result was tested over two stands, produced promising predictions with regards to the levels of production attained. The model can be used to determine production potential under given climatic conditions and could even be applied to plant canopies with analogous biological characteristics.

  • PDF

Budget and distribution of organic carbon in Quercus serrata Thunb. ex Murray forest in Mt. Worak

  • Lee, Seung-Hyuk;Jang, Rae-Ha;Cho, Kyu-Tae;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제38권4호
    • /
    • pp.425-436
    • /
    • 2015
  • The carbon cycle came into the spotlight due to the climate change and forests are well-known for their capacity to store carbon amongst other terrestrial ecosystems. The annual organic carbon of litter production, forest floor litter layer, soil, aboveground and belowground part of plant, standing biomass, net primary production, uptake of organic carbon, soil respiration, etc. were measured in Mt. Worak in order to understand the production and carbon budget of Quercus serrata forest that are widely spread in the central and southern part of the Korean Peninsula. The total amount of organic carbon of Q. serrata forest during the study period (2010-2013) was 130.745 ton C ha-1. The aboveground part of plant, belowground part of plant, forest floor litter layer, and organic carbon in soil was 50.041, 12.510, 4.075, and 64.119 ton C ha-1, respectively. The total average of carbon fixation in plants from photosynthesis was 4.935 ton C ha-1 yr-1 and organic carbon released from soil respiration to microbial respiration was 3.972 ton C ha-1 yr-1. As a result, the net ecosystem production of Q. serrata forest estimated from carbon fixation and soil respiration was 0.963 ton C ha-1 yr-1. Therefore, it seems that Q. serrata forest can act as a sink that absorbs carbon from the atmosphere. The carbon uptake of Q. serrata forest was highest in stem of the plant and the research site had young forest which had many trees with small diameter at breast height (DBH). Consequentially, it seems that active matter production and vigorous carbon dioxide assimilation occurred in Q. serrata forest and these results have proven to be effective for Q. serrata forest to play a role as carbon storage and NEP.

우리나라의 기후변화 대응방안에 관한 정책 제언 (A Policy Suggestion for the Adaptation of Climate Change in Korea)

  • 신임철;김영신
    • 대기
    • /
    • 제19권1호
    • /
    • pp.53-66
    • /
    • 2009
  • The purpose of this study is to describe the roles of carbon dioxide in the climate change, and carbon dioxide reduction policies in some countries. In addition, ways to cope with climate change in Korea are also discussed. Currently, global temperatures are rising due to the carbon dioxide produced by human beings. Global temperatures will rise approximately $6^{\circ}C$ until 2100 if we emit carbon dioxide at a present rate. Temperature rise will affect the terrestrial and oceanic resources, and ultimately influence the socio-economic structures including political stability. Most of the carbon dioxide comes from fossil fuels. Therefore, it is urgent to reduce the use of energy, which comes from fossil fuels. Solving the climate change due to the increases in carbon dioxide is a global problem. Korea should participate in the international community and cooperate with each other in order to reduce the carbon dioxide concentration. No policy was announced for the reduction of carbon dioxide so far. Korea should make a policy for the reduction of carbon dioxide in a specific year compared to that of certain standard year such as 1990 or 2005. Making policy should be based on the scientific result of the amount of carbon dioxide emitted and absorbed. Germanwatch announced the Climate Change Performance Index (CCPI) in order to evaluate an effort to reduce the carbon dioxide for 56 countries which emits 90 % of global carbon dioxide. Ranking for Korea is 51 among 56 countries. This clearly indicates that the appropriate carbon dioxide reduction has not been exercised yet in Korea. Researchers have a moral responsibility to provide updated new ideas and knowledges regarding climate change. Politicians should have a sharp insight to judge the ideas provided by researchers. People need an ethics to reduce the carbon dioxide in every day's life. Scientific research should not be influenced by stress caused by external budget and negative impact of capitalism. Science should be based on the pure curiosity.

소나무 개체군의 이산화탄소 교환 모델 (A Model for Carbon Dioxide Exchanges of Pinus densiflora Population)

  • Suh, kyeHong
    • The Korean Journal of Ecology
    • /
    • 제19권1호
    • /
    • pp.9-19
    • /
    • 1996
  • The model PINUSCO2 hased of physiology was creted to simulate carbon dioxide budget in a population of red pine(pinus densiflora) which is one of the dominant species in Korea. Driving forces of PINUSCO2 are global radiation, maximum and minimum air temperatures. State variables fo the model are standing crops of leaf, branch, trunk and root of the red pine population. PINUSCO2 calculates net photosynthesis of canopy and respiration of each organ with 1 hour time step. PINUSCO2 estimated the annual gross productivity, respiration and net productivity of the red pine population as 43.99, 24.55, and 19.44 ton CO2·ha-1·yr-1, respectively, at the study sity(35°58′00"N, 128°25′35"E). PINUSCO2 showed that the red pine population grew mainly in spring and fall, and that in summer daily net population productivity frequently became negative.

  • PDF

국립생태원 캠퍼스 내 주요 식생의 탄소수지 (Carbon Budget in Campus of the National Institute of Ecology)

  • 김경순;임윤경;안지홍;이재석;이창석
    • 생태와환경
    • /
    • 제47권3호
    • /
    • pp.167-175
    • /
    • 2014
  • 본 연구는 국립생태원 캠퍼스의 탄소수지를 정량화하기 위하여 수행하였다. 현장조사는 국립생태원 캠퍼스의 기존 식생 중 침엽수림과 활엽수림에서 가장 넓은 면적을 차지하고 있는 곰솔군락과 밤나무군락을 대상으로 수행하였다. 순생산량(NPP)은 상대생장법을 적용하여 측정하였고, 토양호흡량은 EGM-4를 적용하여 측정하였다. 곰솔군락과 밤나무군락의 순생산량은 각각 $4.9ton\;C\;ha^{-1}yr^{-1}$$5.3ton\;C\;ha^{-1}yr^{-1}$으로 나타났고, 종속영양생물 호흡량은 각각 $2.4ton\;C\;ha^{-1}yr^{-1}$$3.5ton\;C\;ha^{-1}yr^{-1}$으로 나타났다. 순생산량과 종속영양생물 호흡량을 차감 계산하여 얻은 순생태계생산량(NEP)은 곰솔군락과 밤나무군락에서 각각 $2.5ton\;C\;ha^{-1}yr^{-1}$$1.8ton\;C\;ha^{-1}yr^{-1}$로 나타났다. 본 연구로부터 얻은 곰솔군락과 밤나무군락의 생태계순생산량 지수를 기존 식생에 적용하고 다른 연구로부터 얻은 여러 식생유형의 생태계순생산량 지수를 도입 식생에 대입하여 평가된 국립생태원에 성립된 전 식생의 탄소흡수능은 $147.6ton\;C\;ha^{-1}yr^{-1}$로 나타났고, 이를 이산화탄소로 환산하면 $541.2ton\;CO_2ha^{-1}yr^{-1}$이었다. 이러한 탄소흡수능은 에코리움으로 알려진 유리온실을 비롯하여 국립생태원 내 여러 시설을 운용하며 배출하는 탄소량의 62%에 해당한다. 이러한 탄소상쇄능은 대한민국 국토 전체 및 전형적인 농촌지역인 서천군의 탄소상쇄능의 약 5배에 해당한다. 현재 진행 중인 기후변화가 지구적 차원의 탄소수지 불균형에 기원했음을 고려하면, 본 연구에서 시도한 토지이용 유형을 반영한 공간차원의 탄소수지 평가는 기후변화 문제를 근본적으로 해결하기 위해 요구되는 기초정보를 제공할 수 있을 것으로 판단된다.

일본의 NDC 이행을 위한 공동감축실적이전 분석 (Analysis of the Joint Crediting Mechanism's Contribution to Japan's NDC)

  • 김영선
    • 한국기후변화학회지
    • /
    • 제8권4호
    • /
    • pp.297-303
    • /
    • 2017
  • Considering Japan's Greenhouse Gas (GHG) emissions reduction target for Fiscal Year (FY) 2030, the Joint Crediting Mechanism (JCM) was analyzed in order to estimate its significant contribution to Japan's Nationally Determined Contribution (NDC) and check its availability as a new mechanism to achieve Korea's 2030 mitigation target of 11.3% using carbon credits from international market mechanisms. The total budget for JCM Model Projects (1.2 billion JPY/yr) and JCM REDD+ Model Projects (0.8 billion JPY/yr), which are expected to deliver at least 50% of issued credits to Japan, is estimated about 21.6 billion JPY by the year 2030. This budget is about one third of the purchase of carbon credits from international carbon markets. So far, JCM credits of $378tCO_2-eq$. have been allocated to Japan, which are about 77% of the total issued credit through five-JCM Model Projects implemented from the year 2014. It is expected that Japan will obtain about $0.5MtCO_2-eq$. credits more from 100-ongoing JCM Projects, which are only 1% of Japan's NDC target through JCM credits. With regard to regular issued credits from implemented projects, expected new issued credits from pipeline projects and the less budget for JCM implementation as compared to purchasing carbon credits, JCM credits can be reached a resonable level of Japan's NDC target of $50{\times}100MtCO_2-eq$. through JCM until FY 2030.

HadGEM-CC 모델의 RCP 시나리오에 따른 전지구 탄소수지 변화 전망 (Global Carbon Budget Changes under RCP Scenarios in HadGEM2-CC)

  • 허태경;부경온;심성보;홍진규;홍제우
    • 대기
    • /
    • 제25권1호
    • /
    • pp.85-97
    • /
    • 2015
  • This study is to investigate future changes in carbon cycle using the HadGEM2-Carbon Cycle simulations driven by $CO_2$ emissions. For experiment, global carbon budget is integrated from the two (8.5/2.6) representative concentration pathways (RCPs) for the period of 1860~2100 by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (Had-GEM2-CC). From 1985 to 2005, total cumulative $CO_2$ amount of anthropogenic emission prescribed as 156 GtC. The amount matches to the observed estimates (CDIAC) over the same period (136 GtC). As $CO_2$ emissions into the atmosphere increase, the similar increasing tendency is found in the simulated atmospheric $CO_2$ concentration and temperature. Atmospheric $CO_2$ concentration in the simulation is projected to be 430 ppm for RCP 2.6 at the end of the twenty-first century and as high as 931 ppm for RCP 8.5. Simulated global mean temperature is expected to rise by $1.6^{\circ}C$ and $3.5^{\circ}C$ for RCP 2.6 and 8.5, respectively. Land and ocean carbon uptakes also increase in proportion to the $CO_2$ emissions of RCPs. The fractions of the amount of $CO_2$ stored in atmosphere, land, and ocean are different in RCP 8.5 and 2.6. Further study is needed for reducing the simulation uncertainty based on multiple model simulations.

서울의 두 도시 근린공원에서 평가된 탄소수지 (Carbon Budget Evaluated in Two Urban Parks of Seoul)

  • 김경순;피정훈;안지홍;임치홍;정성희;주승진;이창석
    • 생태와환경
    • /
    • 제49권1호
    • /
    • pp.51-61
    • /
    • 2016
  • 본 연구는 서울시 노원구에 위치한 두 도시공원 (노해근린공원, 상계근린공원)의 탄소수지를 정량하고 인접한 자연공원인 불암산 신갈나무림을 대상으로 동일한 조사를 수행하여 그 개선방안을 찾기 위해 수행하였다. 순생산량(NPP)은 상대생장법을 적용하여 측정하였고, 토양호흡량은 EGM-4를 이용하여 측정하였다. 노해근린공원과 상계근린공원에 조성된 식생의 순생산량은 각각 $5.4\;ton\;C\;ha^{-1}yr^{-1}$$4.8\;ton\;C\;ha^{-1}yr^{-1}$로 나타났고, 불암산 신갈나무군락의 순생산량은 $6.3\;ton\;C\;ha^{-1}yr^{-1}$로 나타났다. 연간 종속영양생물 토양호흡량은 노해근린공원과 상계근린공원에서 각각 $5.3\;ton\;C\;ha^{-1}yr^{-1}$$3.4\;ton\;C\;ha^{-1}yr^{-1}$로 측정되었고, 불암산 신갈나무군락의 토양호흡량은 $4.1\;ton\;C\;ha^{-1}\;yr^{-1}$로 측정되었다. 공원구역에서 나지가 차지하는 면적을 반영하여 산정한 노해근린공원과 상계근린공원의 순생태계생산량은 각각 $-1.0\;ton\;C\;ha^{-1}yr^{-1}$$0.6\;ton\;C\;ha^{-1}yr^{-1}$로 나타났고, 불암산 신갈나무군락의 순생태계생산량은 $2.3\;ton\;C\;ha^{-1}yr^{-1}$로 나타났다. 순생태계생산량 정보에 근거하면 노해근린공원은 탄소배출원으로 분류되었다. 반면에 상계근린공원은 탄소흡수원으로 구분되었지만 그 역할은 자연식생과 비교해 크게 낮은 것으로 평가되었다. 도시공원의 낮은 순생태계생산량은 자연림과 비교해 낮은 순생산량과 탄소배출 기능이 있는 나지를 넓게 배정한 것에 기인하는 것으로 나타났다.