• Title/Summary/Keyword: Carbon budget

Search Result 120, Processing Time 0.024 seconds

Drilling Gas Hydrate at Hydrate Ridge, ODP Leg 204

  • Lee Young-Joo;Ryu Byong-Jae;Kim Ji-Hoon;Lee Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.663-666
    • /
    • 2005
  • Gas hydrates are ice-like compounds that form at the low temperature and high pressure conditions common in shallow marine sediments at water depths greater than 300-500 m when concentrations of methane and other hydrocarbon gases exceed saturation. Estimates of the total mass of methane carbon that resides in this reservoir vary widely. While there is general agreement that gas hydrate is a significant component of the global near-surface carbon budget, there is considerable controversy about whether it has the potential to be a major source of fossil fuel in the future and whether periods of global climate change in the past can be attributed to destabilization of this reservoir. Also essentially unknown is the interaction between gas hydrate and the subsurface biosphere. ODP Leg 204 was designed to address these questions by determining the distribution, amount and rate of formation of gas hydrate within an accretionary ridge and adjacent basin and the sources of gas for forming hydrate. Additional objectives included identification of geologic proxies for past gas hydrate occurrence and calibration of remote sensing techniques to quantify the in situ amount of gas hydrate that can be used to improve estimates where no boreholes exist. Leg 204 also provided an opportunity to test several new techniques for sampling, preserving and measuring gas hydrates. During ODP Leg 204, nine sites were drilled and cored on southern Hydrate Ridge, a topographic high in the accretionary complex of the Cascadia subduction zone, located approximately 80km west of Newport, Oregon. Previous studies of southern Hydrate Ridge had documented the presence of seafloor gas vents, outcrops of massive gas hydrate, and a pinnacle' of authigenic carbonate near the summit. Deep-towed sidescan data show an approximately $300\times500m$ area of relatively high acoustic backscatter that indicates the extent of seafloor venting. Elsewhere on southern Hydrate Ridge, the seafloor is covered with low reflectivity sediment, but the presence of a regional bottom-simulating seismic reflection (BSR) suggests that gas hydrate is widespread. The sites that were drilled and cored during ODP Leg 204 can be grouped into three end-member environments basedon the seismic data. Sites 1244 through 1247 characterize the flanks of southern Hydrate Ridge. Sites 1248-1250 characterize the summit in the region of active seafloor venting. Sites 1251 and 1252 characterize the slope basin east of Hydrate Ridge, which is a region of rapid sedimentation, in contrast to the erosional environment of Hydrate Ridge. Site 1252 was located on the flank of a secondary anticline and is the only site where no BSR is observed.

  • PDF

CO2 and Energy Exchange in a Rice Paddy for the Growing Season of 2002 in Hari, Korea (한국 하리 논에서의 2002년 생장기간의 CO2와 에너지의 교환)

  • Byung-Kwan Moon;Jinkyu Hong;Byoung-Ryol Lee;Jin I. Yun;Eun Woo Park;Joon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • Rice, which occupies about 60% of the farmland in Korea, is a staple crop in Asia. It not only absorbs $CO_2$ from the atmosphere, but also emits carbon in a form of CH$_4$. It has a potential role in the global budget of greenhouse gases because of its relative contributions of carbon absorption and emission associated with changing hydrologic cycle. To better understand its current and future role, seasonal variations of energy and $CO_2$ exchange in this critical ecosystem need to be quantified. The purpose of this study was to measure, document and understand the exchange of energy and $CO_2$ in a typical rice paddy in Korea throughout the whole growing season. Since late April of 2002, we have conducted measurements of energy and $CO_2$ exchange in a rural rice paddy at Hari site, one of the Korea regional network of tower flux measurement (KoFlux). After the quality control and gap-filling, the observed fluxes were analyzed in the context of micrometeorology and biophysics. $CO_2$ and energy exchanges varied significantly with land cover changes (e.g., plant growth stages), in addition to changes in weather and climate conditions. This study, reporting first direct measurement of energy and $CO_2$ exchange over a rice paddy in Korea, would serve as a useful database as one of the reference sites in AsiaFlux and FLUXNET.

Principle of restoration ecology reflected in the process creating the National Institute of Ecology

  • Kim, A. Reum;Lim, Bong Soon;Seol, Jaewon;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.105-116
    • /
    • 2021
  • Background: The creation of the National Institute of Ecology began as a national alternative project to preserve mudflats instead of constructing the industrial complexes by reclamation, and achieve regional development. On the other hand, at the national level, the research institute for ecology was needed to cope with the worsening conditions for maintaining biodiversity due to accelerated climate change such as global warming and increased demand for development. In order to meet these needs, the National Institute of Ecology has the following objectives: (1) carries out studies for ecosystem change due to climate change and biodiversity conservation, (2) performs ecological education to the public through exhibition of various ecosystem models, and (3) promotes regional development through the ecological industry. Furthermore, to achieve these objectives, the National Institute of Ecology thoroughly followed the basic principles of ecology, especially restoration ecology, in the process of its construction. We introduce the principles and cases of ecological restoration applied in the process. Results: We minimized the impact on the ecosystem in order to harmonize with the surrounding environment in all the processes of construction. We pursued passive restoration following the principle of ecological restoration as a process of assisting the recovery of an ecosystem degraded for all the space except in land where artificial facilities were introduced. Reference information was applied thoroughly in the process of active restoration to create biome around the world, Korean peninsula forests, and wetland ecosystems. In order to realize true restoration, we pursued the ecological restoration in a landscape level as the follows. We moved the local road 6 and high-voltage power lines to underground to ensure ecological connectivity within the National Institute of Ecology campus. To enhance ecological diversity, we introduced perch poles and islands as well as floating leaved, emerged, wetland, and riparian plants in wetlands and mantle communities around the forests of the Korean Peninsula in the terrestrial ecosystem. Furthermore, in order to make the public aware of the importance of the intact nature, the low-lying landscape elements, which have disappeared due to excessive land use in most areas of Korea, was created by imitating demilitarized zone (DMZ) landscape that has these landscape elements. Conclusions: The National Institute of Ecology was created in an eco-friendly way by thoroughly reflecting the principles of ecology to suit its status and thus the impact on the existing ecosystem was minimized. This concept was also designed to be reflected in the process of operation. The results have become real, and a result of analysis on carbon budget analysis is approaching the carbon neutrality.

Operation Model of On-site Environmental Management Council to Enhance Eco-friendliness in Public Construction Sites (공공 건설현장의 친환경성 제고를 위한 현장환경관리협의회 운영 모델)

  • Sohn, Jeong-Rak;Park, Seong-Sik;Jun, Myoung-Hoon;Song, Sang-Hoon
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.423-431
    • /
    • 2012
  • The trends of Green growth and environmentally-friendliness came to be the key development indicator for sustaining global environment for the future. Korean government reflected these trends in the main flows of the national development index. Korean construction industry is concentrating investment on fields related to these trends such as technologies for carbon dioxide deduction, materials or products for environmentally-friendly building and alternative energy development, as well. However, efforts to follow these trends during the construction process as a step for production phrase are not being considered enough. In this study, we analysed current status and points to be improved of on-site environment management by surveying major project owners and representatives of the environmental affairs in the leading companies of those fields. Also, we suggested organizational structure and operation model as a solution for enhancing environmentally-friendliness for systematic approach to manage on-site environment in public construction sites. In addition to these solutions, further approaches such as shifting paradigm of project owners and contractors, securing workforce and practical budget for efficient management activities, developing environmental management manuals, setting standards for evaluation of activities are needed for the stable settlement of on-site environmental management.

The emission of VOCs as landfill gas (LFG) from an urban landfill site (도심지역 매립장의 VOC 성분 조성과 배출 특성에 대한 연구)

  • Kim, Ki-Hyun;Choi, Gyoo-Hoon;Oh, Sang-In;Choi, Ye-Jin;Sun, Wooyoung;Jeon, Ui-Chan;Ju, Do Weon
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.407-417
    • /
    • 2003
  • In this study, we measured the concentration of VOCs in ambient air and landfill gas (LFG) in a midsize municipal landfill site. The LFG flux values of VOCs were computed using a total of fifteen VOCs determined by GC-PID system. To understand relative contribution of these 15 VOCs to the total carbon budget, their concentration and flux estimates were compared to those of non-methane hydrocarbons (NMHC) measured concurrently. It was also found that there were systematic differences in absolute VOC concentration levels between LFG and air samples above landfill surface. The VOC concentrations in LFG samples were high enough to reach above a few tens of ppm that are 10 to 100 times higher than those in air above landfill surface. If the LFG flux values were computed using the LFG concentration data of 15 VOCs and NMHC with exit ventilation speed, the magnitude of emissions in the study area is estimated to be 8.6 and 103 ton C/yr, respectively. In the meantime, large fraction of those speciated VOC emissions is accounted for by BTEX.

A Review on Soil Respiration Measurement and Its Application in Korea (토양호흡의 측정과 국내 연구 현황에 대한 고찰)

  • Lee, Eun-Hye;Lim, Jong-Hwan;Lee, Jae-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.264-276
    • /
    • 2010
  • The objectives of this study were to introduce the methods of soil respiration measurement, to review soil respiration studies conducted in Korea, and to suggest potential issues generated from using various methods for soil respiration measurement. According to the measurement principles, the methods of soil respiration measurements are classified as: alkali absorption method (AA), closed chamber method (CC), closed dynamic chamber method (CDC), and open flow method (OF). Based on the litereaure review on soil respiration studies in Korea, the CDC method was mostly used by the researchers (62%), followed by the AA (17%), OF (13%) and CC (8%) methods. Along with these methods, various instruments were used such as LI-6400-09, EGM-3, EGM-4, and automatic soil respiration chamber. Most of the soil respiration measurements were carried out in forest ecosystems and the reported soil respiration showed a wide range of variations from 130 to 900 mg $CO_2\;m^{-2}h^{-1}$. Continuous monitoring of soil respiration with minimal disturbance and the potential inconsistency in measurements are still the challenges facing the researchers, causing a paucity in quality datasets of sufficient quantity. Few attempts of intercomparison among different methods hinder the data users from synthetic analysis and assessment of the collected datasets. In order to better estimate soil carbon budget and understand their exchange mechanisms in key ecosystems of Korea, it is necessary to measure soil respiration at various plant functional types, soils, and climate conditions over a decadal time scale along with the study on the partitioning of soil respiration into autotrophic and heteorotrophic components.

Ecosystem Service Valuation on Groundwater Storage Capacity by Biotope Type (지하수저류량 평가를 통한 비오톱 유형별 생태계서비스 효과 분석)

  • Kang, Deok-Ho;Park, In-Hwan;Kim, Jin-Hyo;Lee, Soon-Ju;Kwon, Oh-Sung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.5
    • /
    • pp.1-13
    • /
    • 2017
  • Recently, due to worldwide industralization and urbanization, natural environment has been severly damaged and global warning is worsening. Heat wave, torrential rainfall, typhoon and other natural disasters continuously occur due to global warming. Policies such as carbon emission regulation are taken into effect to solve such problems. Such global trend has affected interest to natural ecosystem and developed as a concept of ecosystem-services. This study particularly focused on ground water storage capacity among various ecosystem-services such as climate control and soil formation. It is because Korea suffers from drought and flood every year. Therefore, this study aims to understand objective numerical value of ecosystem-services value regarding ground water storage capacity of biotop classes based on relationship among precipitation, amount of evapotranspiration, and runoff of 7 regions of Chilgok-gun, Gyeongsangbuk-do and to convert the value into economic value. The study calculated ground water storage capacity based on relationship among precipitation, amount of evapotranspiration, and run off. Calculated amount of each capacity was 29.26 million ton($30.2mm/m^2$), 430.46 million ton($140.4mm/m^2$), 11.30 million ton($150.1.0mm/m^2$), 33 milion ton($3.0mm/m^2$). Economical value of ecosystem-service by each biotop classes appeared 4,128,800 thousand KRW ($21.32KRW/m^2$) for agricultural biotop, and 60,403,600 thousand KRW ($98.52KRW/m^2$) for forest biotop, 1,572,800 thousand KRW ($104.4KRW/m^2$) for grassland biotop, and 47,600 thousand KRW ($2.18KRW/m^2$) for bare ground biotop. The result of this study like above, it will be used as important evidentiary material to preserve natural resource effectively from various development business and policies that damages natural eco-system. Also, it is judged that ecosystem-service value by each land coverage will be used as important material for preparing legalistic institution such as establishing natural environment preservation plan, budget for alternative forest resource creation cost.

Analysis of the Difficulties in the Development of Programs and Class Management in the Hands-on Science Class and Demands for Training of Instructors (생활과학교실 강사의 프로그램 개발과 수업 운영에서 겪는 어려움 및 연수에 대한 요구 분석)

  • Sung-Man, Lim;Han-Sol, Kim;Ha-Na, Choi;Na-Eun, Lee;Seong-Un, Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.3
    • /
    • pp.322-334
    • /
    • 2022
  • This study attempted to understand the difficulties experienced in program development and class operation of instructors in the hands-on science class and the needs for training based on them. For this study, an online survey was conducted on 193 instructors in the hands-on science class in 2022, and interviews were conducted on 13 instructors. As a result, the difficulties of developing programs for hands-on science class instructors were due to lack of class content, lack of program development budget, lack of equipment necessary for class operation, and difficulty in applying various educational methods such as discussion and practice. The preferred training contents were in the order of the latest science and technology, reconstruction methods of existing programs, and regional specialization technology. In addition, it was found that the difficulties experienced by instructors in class management stemmed from the method of operating hands-on science classes using experience kits. Accordingly, instructor education should be provided in the direction of helping instructors to provide the best education in the situation of the hands-on science classroom.

Development of Korean Green Business/IT Strategies Based on Priority Analysis (한국의 그린 비즈니스/IT 실태분석을 통한 추진전략 우선순위 도출에 관한 연구)

  • Kim, Jae-Kyeong;Choi, Ju-Choel;Choi, Il-Young
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.191-204
    • /
    • 2010
  • Recently, the CO2 emission and energy consumption have become critical global issues to decide the future of nations. Especially, the spread of IT products and the increased use of internet and web applications result in the energy consumption and CO2 emission of IT industry though information technologies drive global economic growth. EU, the United States, Japan and other developed countries are using IT related environmental regulations such as WEEE(Waste Electrical and Electronic Equipment), RoHS(Restriction of the use of Certain Hazardous Substance), REACH(Registration, Evaluation, Authorization and Restriction of CHemicals) and EuP(Energy using Product), and have established systematic green business/IT strategies to enhance the competitiveness of IT industry. For example, the Japan government proposed the "Green IT initiative" for being compatible with economic growth and environmental protection. Not only energy saving technologies but energy saving systems have been developed for accomplishing sustainable development. Korea's CO2 emission and energy consumption continuously have grown at comparatively high rates. They are related to its industrial structure depending on high energy-consuming industries such as iron and steel Industry, automotive industry, shipbuilding industry, semiconductor industry, and so on. In particular, export proportion of IT manufacturing is quite high in Korea. For example, the global market share of the semiconductor such as DRAM was about 80% in 2008. Accordingly, Korea needs to establish a systematic strategy to respond to the global environmental regulations and to maintain competitiveness in the IT industry. However, green competitiveness of Korea ranked 11th among 15 major countries and R&D budget for green technology is not large enough to develop energy-saving technologies for infrastructure and value chain of low-carbon society though that grows at high rates. Moreover, there are no concrete action plans in Korea. This research aims to deduce the priorities of the Korean green business/IT strategies to use multi attribute weighted average method. We selected a panel of 19 experts who work at the green business related firms such as HP, IBM, Fujitsu and so on, and selected six assessment indices such as the urgency of the technology development, the technology gap between Korea and the developed countries, the effect of import substitution, the spillover effect of technology, the market growth, and the export potential of the package or stand-alone products by existing literature review. We submitted questionnaires at approximately weekly intervals to them for priorities of the green business/IT strategies. The strategies broadly classify as follows. The first strategy which consists of the green business/IT policy and standardization, process and performance management and IT industry and legislative alignment relates to government's role in the green economy. The second strategy relates to IT to support environment sustainability such as the travel and ways of working management, printer output and recycling, intelligent building, printer rationalization and collaboration and connectivity. The last strategy relates to green IT systems, services and usage such as the data center consolidation and energy management, hardware recycle decommission, server and storage virtualization, device power management, and service supplier management. All the questionnaires were assessed via a five-point Likert scale ranging from "very little" to "very large." Our findings show that the IT to support environment sustainability is prior to the other strategies. In detail, the green business /IT policy and standardization is the most important in the government's role. The strategies of intelligent building and the travel and ways of working management are prior to the others for supporting environment sustainability. Finally, the strategies for the data center consolidation and energy management and server and storage virtualization have the huge influence for green IT systems, services and usage This research results the following implications. The amount of energy consumption and CO2 emissions of IT equipment including electrical business equipment will need to be clearly indicated in order to manage the effect of green business/IT strategy. And it is necessary to develop tools that measure the performance of green business/IT by each step. Additionally, intelligent building could grow up in energy-saving, growth of low carbon and related industries together. It is necessary to expand the affect of virtualization though adjusting and controlling the relationship between the management teams.

Development of "Miscanthus" the Promising Bioenergy Crop (유망 바이오에너지작물 "억새" 개발)

  • Moon, Youn-Ho;Koo, Bon-Cheol;Choi, Yoyng-Hwan;Ahn, Seung-Hyun;Bark, Surn-Teh;Cha, Young-Lok;An, Gi-Hong;Kim, Jung-Kon;Suh, Sae-Jung
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.330-339
    • /
    • 2010
  • In order to suggest correct direction of researches on Miscanthus spp. which are promising bioenergy crop, authors had reviewed and summarized various literature about botanical taxonomy, morphology and present condition of breeding, cultivation and utilization of miscanthus. Among the genus of Miscanthus which are known 17 species, the most important species are M. sinensis and M. sacchariflorus which origin are East Asia including Korea, and M. x giganteus which is inter-specific hybrid of tetraploid M. sacchariflorus and diploid M. sinensis. Miscanthus is superior to other energy crops in resistance to poor environments including cold, saline and damp soil, nitrogen utilization efficiency, budget of input energy and carbon which are required for producing biomass and output which are stored in biomass. The major species for production of energy and industrial products including construction material in Europe, USA and Canada is M. x giganteus which was introduced from Japan in 1930s. In present, many breeding programs are conducted to supplement demerits of present varieties and to develop "Miscanes" which is hybrid of miscanthus and sugar cane. In Korea, the researches on breeding and cultivation of miscanthus were initiated in 2007 by collecting germplasms, and developed "Goedae-Uksae 1" which is high biomass yield and "mass propagation method of miscanthus" which can improve propagation efficiency in 2009. In order to develop "Korean miscanthus industry" in future, the superior varieties available not only domestic but also foreign market should be developed by new breeding method including molecular markers. Researches on production process of cellulosic bio-ethanol including pre-treatment and saccharification of miscanthus biomass also should be strengthen.