DOI QR코드

DOI QR Code

Analysis of the Difficulties in the Development of Programs and Class Management in the Hands-on Science Class and Demands for Training of Instructors

생활과학교실 강사의 프로그램 개발과 수업 운영에서 겪는 어려움 및 연수에 대한 요구 분석

  • Received : 2022.10.25
  • Accepted : 2022.11.15
  • Published : 2022.12.30

Abstract

This study attempted to understand the difficulties experienced in program development and class operation of instructors in the hands-on science class and the needs for training based on them. For this study, an online survey was conducted on 193 instructors in the hands-on science class in 2022, and interviews were conducted on 13 instructors. As a result, the difficulties of developing programs for hands-on science class instructors were due to lack of class content, lack of program development budget, lack of equipment necessary for class operation, and difficulty in applying various educational methods such as discussion and practice. The preferred training contents were in the order of the latest science and technology, reconstruction methods of existing programs, and regional specialization technology. In addition, it was found that the difficulties experienced by instructors in class management stemmed from the method of operating hands-on science classes using experience kits. Accordingly, instructor education should be provided in the direction of helping instructors to provide the best education in the situation of the hands-on science classroom.

본 연구에서는 생활과학교실 강사의 프로그램 개발 및 수업 운영에서 겪는 어려움과 이를 바탕으로 한 연수에 대한 요구를 파악하고자 하였다. 이를 위하여 2022년 생활과학교실 강사 193명을 대상으로 온라인 설문조사를 실시하였고, 13명을 대상으로 면담을 실시하였다. 연구결과, 생활과학교실 강사들이 프로그램 개발에서 겪는 어려움은 수업 컨텐츠의 부족, 프로그램 개발 예산의 부족, 수업 운영에 필요한 기자재의 부족 등이 나타났으며, 수업 운영에서 겪는 어려움은 돌발상황, 시간 부족 등 계획 대로 운영되지 않는 상황으로 인한 어려움, 토의 및 실습과 같은 다양한 교육 방식 적용의 어려움 등으로 나타났다. 선호하는 연수 내용은 최신 과학기술, 기존 프로그램의 재구성 방법, 지역특화기술 순으로 나타났다. 또한 수업 운영에서 강사들이 겪는 어려움은 체험 키트를 사용하는 수업 운영 방식에서 비롯된 것으로 나타났다. 따라서 체험키트를 사용해야만 하는 생활과학교실 조건에서 강사가 최상의 교육을 할 수 있도록 돕는 방향으로 강사 교육이 이루어져야 한다.

Keywords

Acknowledgement

This work was supported by the Korea Foundation for the Advancement of Science and Creativity (KOFAC) in 2022 (2022AAC0034).

References

  1. 강경종, 장명희, 김종우, 권오영, 김남호(2011). 특성화고 전문교과 교원의 기업연계 현장직무연수 모델 연구. 고용노동부, 한국직업능력개발원.
  2. 고상숙, 맹희주, 윤지현, 이주영(2021a). 2020년 생활과학교실 강사 원격연수프로그램 개발 (연구보고 R-2020-01228). 서울: 한국과학창의재단.
  3. 고상숙, 윤지현, 맹희주(2021b). 저경력 생활과학교실 강사들이 수업 계획 및 운영 과정에서 겪고 있는 어려움에 대한 인식 연구. 학습자중심교과교육연구, 21(19), 319-338.
  4. 김기홍, 장명희, 김종우(2009). 직업교육기관 교원 역량 강화 방안. 한국직업능력개발원.
  5. 김애련(2004). 대학평생교육원 성인학습자의 학습성과인식 연구. 평생교육학연구, 10(2), 129-165.
  6. 김은주, 장신호(2009). '학교로 가는 생활과학교실'프로그램이 참여자의 과학적 태도, 흥미도, 만족도에 미치는 영향. 초등과학교육, 28(4), 495-506.
  7. 송진웅, 오원근, 조숙경, 구수정(2002). 청소년 학교밖 과학 활동 지원 시설에 대한 실태 조사 및 DB구축. 한국과학문화재단, 제 2002-30호.
  8. 임미혜, 소금현, 심규철, 여성희(2010). 과학관 전시물의 전시영역 및 교육과정과의 연계성분석. 교과교육학연구, 14(2), 433-451. https://doi.org/10.24231/RICI.2010.14.2.433
  9. 임숙경, 조용하(2008). 여성 성인학습자의 평생학습 참여성과 및 영향요인에 관한 구조모형분석. Andragogy Today, 11(4), 53-76.
  10. 주은정, 장신호(2013). 읍면동 생활과학교실에 참가한 학생들의 만족도 분석. 한국초등교육, 24(4), 281-295. https://doi.org/10.20972/KJEE.24.4.201312.281
  11. 최경희, 장현숙, 이현주(2006). 과학관 교육 프로그램 활용에 대한 초등학교 교사들의 인식. 초등과학교육, 25(3), 331-337.
  12. 최윤희, 김용진(2020). 학교 밖 생활과학교실 참여 학생에 대한 교육적 효과. 교육과학연구, 22(4), 23-41.
  13. Barker, S., & Slingsby, D. (2003). Making connections: Biology, environmental education and education for sustainable development. Journal of Biological Education, 38(1), 4-6. https://doi.org/10.1080/00219266.2003.9655888
  14. Chaffee, R., Gupta, P., Hammerness, K., & Jackson, T. (2021). Centering equity and access: An examination of a museum's mentored research youth program. In B. Bevan, & B. Ramon (Eds.), Making museums more equitable: Structural constraints and enduring challenges surfaced through research and practice perspectives. Taylor and Francis: Routledge.
  15. Davies, L. (2008). Informal learning: A new model for making sense of experience. England: Gower.
  16. Falk, J. H. (2001). Free-choice science learning: Framing the discussion. In J. Falk (Ed.), Free-choice science education: How we learn science outside of school (pp. 3-20). New York, NY: Teachers College Press.
  17. Falk, J. H., & Dierking, L. D. (2010). The 95 percent solution. American Scientist, 98(6), 486-493. https://doi.org/10.1511/2010.87.486
  18. Feng, L. (2012). Teacher and student responses to interdisciplinary aspects of sustainability education: What do we really know? Environmental Education Research, 18(1), 31-43.
  19. Flowers, S. K., & Beyer, K. M. (2016). Early entry into ecology: Authentic field research experiences for high school youth. The Bulletin of the Ecological Society of America, 97(1), 111-122. https://doi.org/10.1002/bes2.1215
  20. Habig, B., & Gupta, P. (2021). Authentic STEM research, practices of science, and interest development in an informal science education program. International Journal of STEM Education, 8(1), 1-18.
  21. Kim, M., & Dopico, E. (2016). Science education through informal education. Cultural Studies of Science Education, 11(2), 439-445.
  22. Malcolm, J., Hodkinson, P., & Colley, H. (2003). The interrelationships between informal and formal learning. Journal of Workplace Learning, 15(7/8). 313-318. https://doi.org/10.1108/13665620310504783
  23. Monteiro, B. A. P., Martins, I., De Souza Janerine, A., & De Carvalho, F. C. (2016). The issue of the arrangement of new environments for science education through collaborative actions between schools, museums and science centres in the Brazilian context of teacher training. Cultural Studies of Science Education, 11(2), 419-437. https://doi.org/10.1007/s11422-014-9638-4
  24. Solomon, J. (1987). Social influence on the construction of pupil's understanding of science. Studies in Science Education, 14, 63-82.
  25. Todd, B., & Zvoch, K. (2019). Exploring girls' science affinities through an informal science education program. Research in Science Education, 49(6), 1647-1676. https://doi.org/10.1007/s11165-017-9670-y