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ABSTRACT

Rice, which occupies about 60% of the farmland in Korea, is a staple crop in Asia. It not only absorbs CO,
from the atmosphere, but also emits carbon in a form of CH,, It has a potential role in the global budget
of greenhouse gases because of its relative contributions of carbon absorption and emission associated with
changing hydrologic cycle. To better understand its current and future role, seasonal variations of energy
and CO, exchange in this critical ecosystem need to be quantified. The purpose of this study was to
measure, document and understand the exchange of energy and CO; in a typical rice paddy in Korea
throughout the whole growing season. Since late April of 2002, we have conducted measurements of
energy and CO,; exchange in a rural rice paddy at Hari site, one of the Korea regional network of
tower flux measurement (KoFlux). After the quality control and gap-filling, the observed fluxes
were analyzed in the context of micrometeorology and biophysics. CO, and energy exchanges varied
significantly with land cover changes (e.g., plant growth stages), in addition to changes in weather
and climate conditions. This study, reporting first direct measurement of energy and CO; exchange
over a rice paddy in Korea, would serve as a useful database as one of the reference sites in AsiaFlux

and FLUXNET.
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I. INTRODUCTION

As the scientific community better understands that
changes in weather and climate are closely linked with
land surface processes, attentions have been given to
establishing global networks for monitoring surface
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exchanges of energy and matters (e.g., greenhouse
gases, pollutants). For the last several years, flux
monitoring networks, based on micrometeorological
eddy covariance towers, have been established in various
ecosystems in North America and Europe (Aubinet et al.,
2000; Baldocchi er al., 2001). These networks have
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provided infrastructure for compiling, archiving and
distributing flux measurement, meteorological and plant/
soil data, thereby promoting the synthesis, discussion
and communication even among different disciplines.
Following the establishment of AsiaFlux, Korean
regional network of tower flux measurement (KoFlux)
has been proposed in January 2001 (http:/www.koflux.
org) and flux measurements have been continued in key
ecosystems (e.g., forest, grassland, farmland) in and
around Korean Peninsula (Kim et al., 2002b).

Rice, which occupies about 60% of the farmland in
Korea, is a staple crop in Asia. Rice paddies also have
a potential role in the global budget of greenhouse
gases such as CO, and CH, because they sequester the
former but release the latter and their relative contribution
changes with natural/artificial irrigations (e.g., Neue and
Sass, 1994; Miyata er al., 2000).

In 1960s and 1970s, energy and CO, exchange in rice
paddies has been studied intensively using statistical or
conventional micrometeorological techniques such as
the aerodynamic and the Bowen ratio methods (e.g.,
Cho, 1972; Uchijima, 1976). In 1980s, the development
of fast response CO, analyzers enabled us to measure
CO, fluxes in a rice paddy using eddy covariance
method (Ohtaki and Matsui, 1982; Ohtaki, 1984).
Harazono et al. (1998) and Miyata et al. (2000)
investigated the role of water layer in energy, CO,
and CH, exchange over rice paddies in Japan. In
Korea, based on short-term flux measurements, Hong
et al. (2001) and Kim er al. (2002a) reported that
rice paddies changed from a sink to a weak source of
CO, (with a net release of 1-3gm™ d”') near
harvesting.

To better understand its current and future role in
global carbon cycle, we not only need to quantify long-
term exchange of CO, and energy in rice paddies but

Table 1. The field management related with rice cultivation

also to explain their exchange mechanism with changing
environment. In this paper, we report our first continuous
measurement of CO, and energy fluxes in a rice paddy
during the whole growing season of 2002 in Hari,
Korea. After gap filling of missing data, half-hourly
fluxes were integrated to examine the role of rice paddy
as a sink or source of atmospheric CO, throughout the
whole growing season.

II. MATERIAL AND METHOD

2.1. Site description

Continuous flux measurements have been made in
the KoFlux PK site (37.4N, 126.2E), a rice paddy
located at Hari, Kang-hwa Gun, since 25 April 2002.
The site is flat and homogeneous, surrounded by
similar paddy fields and its micrometeorological fetch
is more than 2 km depending on the prevailing wind
direction. It is one of the ideal sites to apply
micrometeorological eddy covariance method.

The soil type was the silt loam in surface soil (0-0.2
m), and the silt in deep soil (0.2-0.4 m). The
maximum leaf area index (LAI) was on average 4.5
(#0.5). Rice planting was conducted from 10 to 16
May and fertilizer was applied twice (i.e., 10 May and
6 July). With irrigation management, the depth of
floodwater fluctuated from 0.04 to 0.1 m. The row
spacing and the rice spacing in the same row were 0.30
m and 0.15 m, respectively. We monitored LAI leaf
length and width, and canopy height from ground
surface on a regular basis. The harvest was made from
2 to 23 October. The typhoon, “Rusa” had passed by
the measurement site on 31 August 2002, resulting in
damages in various patches of the paddies. The detailed
information on field management is summarized in
Table 1.

Management Date Remarks
Rice planting 5/10-5/16
Irricati 5/6-6/23 The time of irrigation and drainage was different by 2 or 3 days
mgation 7/2-9/12 in different sections of the field.
~1
Fertilizer 9 N - P205 - K20 (kg ha )

Application 1st: 5/10, 2nd: 7/6

Ist: 24 - 10 - 8 (425)
2nd: 18- 0- 15 (175)

Harvest 10/2 - 10/23

The maturity of rice was somewhat different in different sections
of the field due to damage by typhoon.
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2.2. Micrometeorological measurements

Eddy covariance method was employed to measure
CO,, sensible heat (H) and latent heat flux (LE). To
measure the fluctuations in wind speed, air temperature,
and the density of CO, and water vapor, we set up a
three-dimensional sonic anemometer (CSAT3, Campbell
Scientific Inc., USA (hereafter, CSI)) and an open-path
infrared gas analyzer (OP-2, Data Design Group,
England), respectively, on a 10 m tower (Fig. 1). We

Fig. 1. Eddy covariance instrumentation.

measured photosynthetically active radiation (PAR) and
net radiation (Rn) with a quantum sensor (LI-190SA,
Licor Inc., USA) and a net radiometer (CNR1, Kipp &
Zonen, Holland), respectively. Also, we set up the rain
gage (TE525, CSI) and the temperature/humidity probe
(HMP45C, CSI) to measure basic meteorological
variables. We measured ground heat flux with soil
thermocouples (TCAY, CSI), soil heat flux plates (HFT3,
CSI), and water content reflectometers (CS615, CSI) at
two locations. To estimate water storage term, we
measured the temperature profile in the water layer

thin styrofoam ___

A
Water surface

~___ 7 thermocouples
=T 00d stick

N N e N VT NN
Ground surface

Fixed stone

Fig. 2. Measurement system of the water layer temperature.

Table 2. The instruments, measurement variables and height (depth)

Measurement height

Instruments Quantity  Serial No. Measurement variables (depth) Remarks

Fluctuations of wind speed
CSAT3 ! 0577 and air temperature om Setupat2.2m

from 4/25 to 5/1

OP-2 1 0OP2012 CO, and H,0 density 9m

Rn, incoming/outgoing short- Setupat 1.7m
CNRI ! 970067 and long-wave radiation 29m from 4/25 to 5/1
Q-7.1 1 Q97028 Rn 29m Set up on 5/23
LI-190SA 1 Q23292 PAR 29m Set up on 5/20
LI-200SA 1 PY26943 Solar radiation 29m Set up on 5/20

Air temperature and relative Setup at 2.8 m
HMP4SC 1 TO920014 "y idiry om from 4/25 to 5/1

H963424
HFT3 2 H963425 G (0.09 m)
TCAV 1 E97-0440  Soil temperature (0.03, 0.06 m)
LT#421828 .
CSe6l15 2 LT#407722 Soil water content (0-0.09 m)
107B 4 N/A Water temperature Measu.rement depth varied
according to water depth

CR5000 1 1292 Fast response instruments
CR23X 1 2600 Slow response instruments
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using four thermocouples (Fig. 2), and manually checked
the depth of the water layer at 10 locations on a regular
basis.

The raw turbulence data and meteorological/soil data
were measured at 0.1s and 30s intervals, respectively,
and averaged every half hour using two digital data-
loggers (i.e., CR5000 and CR23X, CSI). Table 2
summarizes the detailed information on micro-
meteorological instrumentation.

2.3. Data processing

Prior to data processing, we removed the bad or
suspected data based on three criteria: i) mean wind
speed of <1.0 m sl i) negative momentum flux (i.e.,
from the ground to the atmosphere); and iii) data with
>50% difference between measured and theoretical
values of integral turbulence characteristics (e.g., Foken
and Wichura, 1996; Hong and Kim, 2002).

To minimize the effect of the ground slope or the

Table 3. Data retrieval calendar for the flux measurement in 2002

Day Month Apr. May. Jun. Jul. Aug. Sep. Oct. Nov.
1 / / (o] O RO O O
2 (0] 6} O 0O 0]
3 (0] (0] RO O 0O 0]
4 O 0] RO (6] (€] O
5 / RO R/ RO 0 O
6 X RO RX o O O
7 X 0O RX O 0 0]
8 X o RX O 0 0
9 / X (0] CcX (0] 0 o]

10 O / 0} RX O O O
11 O RO (0] X (6] (6] 0O
12 / RO O X 0] O O
13 0 0O RO X o 0 (0]
14 O 0O RO / o 0O O
15 C/ 0O RO o o (0] O
16 RO 0 O O O 0] O
17 RO O 0] RO O O RO
18 / O 0] o (0] 0 O
19 / RO RO (6] (6] 0O 0
20 o R/ (0] 0] O O RO
21 O X (0] o O O O
22 o RX 0] o / 0] C/
23 O RCX R/ o X 0] O
24 (0] RX RO o X RO o
25 / O X (o) o cX RO (0]
26 (0] O X (0] (6] O o 0
27 (0] 0 O o) RO o o 0
28 o) O O 0] (6] RO (0] o)
29 R/ 0O O 0 (6] RO o o
30 RO RO O o) o o (6] (0]
31 O (o) RO o)

O :>80%, /:30-80%, X : <30%, R : rainy day, C : calibration
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sensor tilt, we carried out the correction of sonic
anemometer using planar fit method (Wilczak ez al.,
2001), which turned out to be negligible. We also
corrected LE and CO, flux data for the effect of air
density fluctuations due to simultaneous fluxes of water
vapor and sensible heat (Webb ez al., 1980). Frequency
response correction was made for the sensor separation
(about 0.5 m) between the sonic anemometer and the
gas analyzer, following Moore (1986).

The ground heat flux (G) was estimated from the
measured heat flux (G,,) at the reference depth (D,) and
the heat storage in the soil layer above the plate. The
heat storage term is computed based on the integration
of soil temperature (7;) multiplied by bulk heat capacity
(Cp).

D\'
G =G+ [ 2T s m

where Cg=pc=c,(1-9)+ p, c, 6 (Bristow, 1998). p,
and p,, are the density of the soil and water, respectively.
¢, and ¢, are the specific heat of the soil and water,
respectively. 6 and ¢ are the soil water content and
porosity, respectively.

When paddies are flooded, the heat storage in the
water layer (S,) is calculated similarly to that in the
soil layer:

D“ a
Sw - "‘0 gt(pw Cy, Tw)dz (2)

where T, is the averaged water temperature measured
from the four depths, and D,, is the depth of the water
layer.

In long-term flux measurements, the gaps in the data
are unavoidable due to bad weather condition (e.g., rain
storm, lightening), system failure, instrumental main-
tenance, for example. Therefore, gap-filling procedures
are required to establish a complete database. The data
used in this study were from 25 April to 30 November
2002 and the overall rate of data retrieval was about
51% for the total period of 220 days (Table 3). We
employed the following strategies for gap-filling: (1) A
few half-hourly gaps in the data were filled by
interpolation; (2) Gaps in PAR data were filled with
calculated values following Goudriaan (1977). Overall
errors in this approximation were less than 10% and
smaller on cloudy days (Moon and Kim, 2002); and (3)
Mean-diurnal variation method (MDV) was used for

the gap fillings of CO, flux data, following Falge ef al.
(2001). In this method, missing data were replaced by
the mean of adjacent days, and the length of the time
interval of averaging was 14 days for daytime and 7
days for nighttime period.

III. RESULTS AND DISCUSSION

3.1. Energy balance

Fig. 3 shows diurnal variation of energy fluxes on 1
July and 2 August 2002. Following the micrometeorolo-
gical sign convention, Rn is positive when it is toward
the ground surface, whereas the other components are
positive when from the ground surface. During daytime,
most of Rn was distributed into LE, and thus partitioning
to H was relatively small, resulting in the Bowen ratio
(B=H/LE) of 0.23 and 0.16 on 1| July and 2 August,
respectively. The evapotranspiration (ET’) on these two
days, computed from the daily integrated LE, was 3.5
mm 4~ and 4.1 mm &, respectively. On | July when
the water was drained, E7 was near zero during
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Fig. 3. Diurnal variation of energy flux on 1 July and 2
August 2002.
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Fig. 4. Monthly variation of daytime energy budget closure
and partitioning.

nighttime; whereas ET on 2 August (with irrigation)
continued at a low rate of 0.02 mm 47" at night.
Energy budget closure, 1 (= (LE+H+G+S,,)/Rn) is
one of the rule of thumb criteria to check the quality of
the measured flux. Wilson et al. (2002) showed that
errors in the magnitudes of CO, uptake or release
increase as the lack of energy budget closure increases.
Fig. 4 shows monthly variation of energy budget closure
and partitioning during daytime. Energy budget was
closed reasonably well with averaged n of 0.8—0.93.
During the peak growing season, the ratios of LE and

H to Rn were 59—73% and 10—16%, respectively. Also,
the ratio of S,, to Rn was 5—9%, similarly to that of G.
After rice-planting, LE/Rn steadily increased as the
season progressed (accordingly, H/Rn decreased) and 8
dropped down to <0.2. Toward the harvest, 3 rapidly
increased to 0.7 as the paddy dried up.

Fig. 5 shows the variation of daily accumulated ET
during the entire measurement period. After rice-planting,
ET rapidly reached up to 4—7 mm d~' and continued to
increase until mid June. During the stage of active plant
growth in June with ET rates of >5mm d~', we
calculated the equilibrium evapotranspiration (E7,) and
compared it against actual ET. The averaged ratio of ET
to ET,, was 1.45, which was greater than classical value
of Priestley-Taylor coefficient (i.e., ~1.25).

3.2. Diurnal variation of CO, flux

Fig. 6 shows diurnal variation of PAR and CO, flux
on 14 June, 1 July, 2 August and 13 September 2002.
In order to better describe the photosynthetic response
to PAR, we used net assimilation rate (NAR) which has
the opposite sign to CO, flux.

Diurnal variation of NAR followed that of PAR
during daytime. As expected, NAR at midday (NAR,,..;)
increased with the development of rice canopy until
August and then decreased toward the harvest. In
comparison with short-term flux measurement made in

Daily-accumulated ET (mm d™)

150 200

Fig. 5. Variation of daily-accumulated evapotranspiration.

250 300

Day of Year
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Fig. 6. Diurnal variation of PAR and CO; flux on 14 June, 1 July, 2 August, and 13 September 2002.

September of 2001 at the same site (Hong er al., 2001),
we found that the NAR,,;, in 2002 was larger for the
same period. Such difference in CO, exchange between
the two years may have resulted from the difference in
weather and climate conditions and the subsequent
changes in the phenology of rice plants. Furthermore, a
late occurrence of typhoon in 2002 caused a delay in
rice-ripening by reducing the necessary amount of solar
radiation. As a result, the harvest was delayed by about
two weeks in 2002. The maximum NAR,,, in early
August was 2.4 mg m™s™', which was relatively smaller
than that of Campbell et al. (2001a)’s study in Texas,
USA.

Fig. 7 shows the photosynthetic response to PAR at
different stages of plant growth. Statistically significant
hyperbolic relationship was obvious for each stage of
plant growth. Light saturation points increased in
proportion to increasing LAI with the season. Our
results were similar to those of Campbell et al. (2001b).
Despite the incompleteness of our preliminary data
from these two years, our analyses demonstrate that

weather and climate do influence the phenology of rice
plant which in turn changes the length and timing of the
growing season, thereby affecting the whole ecosystem
exchange of CO, from year to year.

3.3. Daily-integrated net ecosystem CO; ex-
change

Variations of daily-integrated NEE of CO,, acquired
through gap-filling process, are shown for the whole
growing season of 2002 in Fig. 8. In late April when
the ground was just bare soil, the paddy field was a
weak source of CO, with a daily emission rate of 3-6
g m™>. Immediately after rice planting, the paddies turned
from a weak source (0—3 gm™d™") in mid May to a
weak sink (-3 -0 gm™2d™") in late May. The maximum
magnitude of NEE (about -44 gm>d™") occurred
during the peak growth stage (late July - early August).

As rice plants became senescent, NEE decrease after
August. Consequently, paddy field changed from sink
to source of CO, towards the harvest in early October.
It was interesting to note that this result is different
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Fig. 7. Relationship between CO, flux and PAR during different growth stages.
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Fig. 8. Daily-integrated net ecosystem exchange (NEE) of CO,.

from that of Hong et al. (2001) and Kim ez al. (2002a). confirms the potential influence of changing weather
They reported that the paddies turned into a source of  and climate. For example, changes in energy and water
CO, before the harvest with a daily emission rate of 1 cycles (e.g., Asian monsoon, El Nino) would alter the
—3 gm2 Such inter-annual variation in NEE further  interactions between ecosystems and the atmosphere,
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probably causing subsequent changes in global bio-
geochemical cycles and their feedback mechanisms.

IV. CONCLUSION

It is important to quantitatively evaluate energy and
CO, exchange in paddy fields on a long-term basis
because rice is a major crop in Asia and has a potential
role in global biogeochemical cycles. We have established
a tower flux measurement system based on eddy
covariance technique in a rice paddy at Hari, west central
part of Korea. Continuous measurements of CO, and
energy fluxes and other meteorological and plant/soil
variables have been made since 25 April 2002.

Preliminary analyses after appropriate corrections, data
processing, and gap filling provided several important
findings regarding the exchange of energy and CO,
between the rice paddy and the overlying atmosphere.
Among other things, we noted that the energy parti-
tioning and CO, exchange were dynamic in the rice
paddy, actively interacting with changes in weather and
climate. Albeit the flux measurements were rather limited
to a relatively short period, our analyses suggested
possible inter-annual variability in net ecosystem CO,
exchange in the paddy fields with changes in energy
and water cycles from a local to regional scale.

This study, reporting first direct measurement of
energy and CO; exchange over rice paddy in Korea,
would serve as a useful database as one of the reference
sites in AsiaFlux and FLUXNET (Kim et al., 2002b).
We aim to continue our flux observation to produce
multi-year database, which will be open to the global
scientific community for further investigation.
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