• 제목/요약/키워드: Carbon beam

검색결과 779건 처리시간 0.03초

탄소섬유시트로 보강된 철근콘크리트 구조물의 휨성능에 대한 이론 및 실험적 연구 (Theoretical and Experimental Investigations on the Flexural Behavior of RC members Strengthened with Carbon Fiber Sheets)

  • 장득훈;기영갑;도재문;박현정;조백순;박대효
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.521-526
    • /
    • 2001
  • The flexural behavior of a strengthened beam that is a reinforced concrete beam with externally bonded carbon fiber sheets, is theoretically and experimentally investigated. A rectangular beam having a width of 20cm depth of 30cm and effective depth of 25cm is chosen. In order to have a variety of beams analyzed, three reinforcement ratios are chosen for the analysis: 1)$\frac{1}{2}$$\rho$$_{max}$, which is the most suitable reinforcement ratio for deflection consideration and the highest reinforcement ratio for practical designing beams as well; 2)$\rho$$_{max}$, which is the lowest reinforcement ratio for design purposes; and 3)the reinforcement ratio halfway from 1) and 2). Carbon fiber sheets with width of 15cm are externally bonded at the bottom fiber of the beam. The effect of the amount of carbon fiber sheets varying from 1 to 4 plies on the flexural capacity of the strengthened beam are also examined. Yield loads, ultimate loads, and flexural rigidities of the strengthened beam from the experimental results are composed with theoretical ones.nes.

  • PDF

Change in Water Contact Angle of Carbon Contaminated TiO2 Surfaces by High-energy Electron Beam

  • Kim, Kwang-Dae;Tai, Wei Sheng;Kim, Young-Dok;Cho, Sang-Jin;Bae, In-Seob;Boo, Jin-Hyo;Lee, Byung-Cheol;Yang, Ki-Ho;Pack, Ok-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1067-1070
    • /
    • 2009
  • We studied change in water contact angle on $TiO_2$ surfaces upon high-energy electron-beam treatment. Depending on conditions of e-beam exposures, surface OH-content could be increased or decreased. In contrast, water contact angle continuously decreased with increasing e-beam exposure and energy, i.e. change in the water contact angle cannot be rationalized in terms of the overall change in the surfacestructure of carbon-contaminated $TiO_2$. In the C 1s spectra, we found that the C-O and C=O contents gradually increased with increasing e-beam energy, suggesting that the change in the surface structure of carbon layers can be important for understanding of the wettability change. Our results imply that the degree of oxidation of carbon impurity layers on oxide surfaces should be considered, in order to fully understand the change in the oxide surface wettability.

Static stability and vibration response of rotating carbon-nanotube-reinforced composite beams in thermal environment

  • Ozge Ozdemir;Huseyin Ural;Alexandre de Macedo Wahrhaftig
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.445-458
    • /
    • 2024
  • The objective of this paper is to present free vibration and static stability analyses of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. Beam structural equations and CNT-reinforced composite (CNTRC) beam formulations are derived based on Timoshenko beam theory (TBT). The temperature-dependent properties of the beam material, such as the elastic modulus, shear modulus, and material density, are assumed to vary over the thickness according to the rule of mixture. The beam material is modeled as a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix. The SWCNTs are aligned and distributed in the isotropic matrix with different patterns of reinforcement, namely the UD (uniform), FG-O, FG-V, FG- Λ and FG-X distributions, where FG-V and FG- Λ are asymmetric patterns. Numerical examples are presented to illustrate the effects of several essential parameters, including the rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force, and moments due to temperature variation. To the best of the authors' knowledge, this study represents the first attempt at the finite element modeling of rotating CNTRC Timoshenko beams under a thermal environment. The results are presented in tables and figures for both symmetric and asymmetric distribution patterns, and can be used as benchmarks for further validation.

DLC 박막을 이용한 Ion Beam 배향 TN 셀의 전기광학특성에 관한 연구 (A Study on Electro-Optical Characteristics of the Ion Beam Aligned TN Cell on the DLC Thin Film)

  • 황정연;조용민;노순준;이대규;백홍구;서대식
    • 한국전기전자재료학회논문지
    • /
    • 제15권8호
    • /
    • pp.726-730
    • /
    • 2002
  • Electro-optical (EO) performances of the ion beam (IB) aligned twisted-nematic (TN)-liquid crystal display (LCD) with ion beam exposure on the new diamond-like carbon (DLC) thin film surface were investigated. A good voltage-transmittance (V-T) curve of the ion beam aligned TN-LCD with oblique ion beam exposure on the DLC thin film surface for 1 min was observed. Also, the fast response time of the ion beam aligned TN-LCD with oblique ion beam exposure on the DLC thin film surface for 1 min can be achieved. Finally, the residual DC voltage of the ion beam aligned TN-LCD on the DLC thin film surface is almost the same as that of the rubbing aligned TN-LCD on a polyimide (Pl) surface.

Influence of high energy electron beam treatment on the photocatalytic activity of $TiO_2$ nanoaparticles on carbon fiber

  • 심채원;김명주;서현욱;김광대;닐로이 쿠마르 데;김동운;남종원;정명근;이병철;박지현;김영독
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.441-441
    • /
    • 2011
  • $TiO_2$ nanoparticles were grown on carbon fiber by atomic later deposition (ALD) with TTIP $(Ti(OCH(CH_3)_2)_4$ and $H_2O$ precusors. After sampe surfaces were treated by electron beam (1 MeV, 5 KGy), an improvement in the photocatalytic reacitivity of $TiO_2$ nanoparticles on carbon fiber was observed. An increase in the population of hydroxyl group on $TiO_2$ particles and the oxidation of carbon fiber were found upon e-beam exposure, whereas there was no noticeable changes of their morphology. It implies that those changes in O and C 1s state of $TiO_2$ particles/carbon fiber induced by e-beam treatment could be related to the enhancement of the photocatalytic activity. In contrast, when carbon fiber fully covered with $TiO_2$ thick films was treated with high-energy electron beam under same conditions, the improvement of photocatalytic activity as well as any changes in XPS spectra (Ti 2p, O 1s and C 1s) could not be found.

  • PDF

다중스케일 기법을 이용한 카본나노튜브 복합재료의 물성치 계산 (Estimation of material properties of carbon nanotube composite applying multi-scale method)

  • 김정택;현석정;김철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.165-168
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

카본 시트 튜브로 구속된 콘크리트 외부 보-기둥 접합부의 균열 양상에 대한 연구 (Study on the Crack Shape of Concrete Exterior Beam-Column Joints Confined by Carbon Sheet Tube)

  • 문영균;박진영;이경훈;홍원기;김희철
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.199-204
    • /
    • 2003
  • The purpose of this study is to experimentally investigate the structural performance of concrete exterior beam-column joints confined by carbon sheet tube. Four specimens were produced with different numbers of carbon sheet and the other specimen was produced with reinforced concrete. A hydraulic dynamic actuator with 30tonf capacity was used to cyclic lateral loading test. The experimental results represent that the numbers of carbon sheet have an influence the load and displacement capacity. However, the bond length of carbon sheets for connecting beam and column has to be considered to improve the capacity of joint.

  • PDF

The Effect of Unprecracked Hydride on the Growth and Carbon Incorporation in GaAs Epilayer on GaAs(100) by Chemical Beam Epitaxy

  • 박성주;노정래;하정숙;이을항
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권2호
    • /
    • pp.149-153
    • /
    • 1995
  • We have grown GaAs epilayers by chemical beam epitaxy(CBE) using unprecracked hydrides and metal organic compounds via a surface decomposition process. This result shows that unprecracked arsine (AsH3) or monoethylarsine (MEAs) can be used in chemical beam epitaxy(CBE) as a replacement of a precracked AsH3 source in CBE. It was also found that the uptake of carbon impurity in epilayers grown using trimethylgallium(TMG) with unprecracked AsH3 or MEAs was significantly reduced compared to that in epilayers grown by CBE process employing TMG and arsenics produced from precracked hydrides. We propose a surface structural model suggesting that the hydrogen atoms play an important role in the reduction of carbon content in GaAs epilayer. Intermediates like dihydrides from hydride sources were also considered to hinder carbon atoms from being incorporated into the epilayers or to remove other carbon containing species on the surface.

Dynamic analysis of the micropipes reinforced via the carbon dioxide adsorption mechanism based on the mathematical simulation

  • Liu, Yunye
    • Computers and Concrete
    • /
    • 제30권3호
    • /
    • pp.185-196
    • /
    • 2022
  • In this paper, the dynamic characteristics of a composite cylindrical beam made of a mechanism of carbon dioxide absorption coated on the tube core are investigated based on the classical beam theory coupled with the modified couple stress theory. The composite tube structures are assumed to be uniform along the tube length, and the energy method regarding the Hamilton principle is utilized for generating the governing equations. A powerful numerical solution, the generalized differential quadrature method (GDQM), is employed to solve the differential equations. The carbon dioxide trapping mechanism is a composite consisting of a polyacrylonitrile substrate and a cross-link polydimethylsiloxane gutter layer. Methacrylate, poly (ethylene glycol), methyl ether methacrylate, and three pedant methacrylates are all taken into account as potential mechanisms for capturing carbon dioxide. The application of the present study is helpful in the design and production of microelectromechanical systems (MEMS) and the different valuable parameters, such as the length-scale parameter, rate of section change, aspect ratio, etc., are presented in detail.

힘-변위 관계를 이용한 확장된 티모센코 보에 대한 스펙트럴 요소 모델링 (Spectral Element Modeling of an Extended Timoshenko Beam Based on the Force-Displacement Relations)

  • 이창호;이우식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.45-48
    • /
    • 2008
  • Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the periodic plane truss, and the periodic space lattice beam.

  • PDF