• 제목/요약/키워드: Carbon anode

검색결과 458건 처리시간 0.031초

리튬이온배터리 음극활물질 Silicon/Carbon 복합소재의 전기화학적 특성 (Electrochemical Characteristics of Silicon/Carbon Composites for Anode Materials of Lithium Ion Batteries)

  • 박지용;정민지;이종대
    • 공업화학
    • /
    • 제26권1호
    • /
    • pp.80-85
    • /
    • 2015
  • 본 연구에서는 리튬이차전지의 음극활물질인 실리콘/탄소 복합소재를 제조하여 전기화학적 특성을 확인하였다. 실리콘/탄소 합성물은 마그네슘의 열 환원 반응을 통해 SBA-15 (Santa Barbara Amorphous material No. 15)를 제조한 후 페놀 수지의 탄화 과정을 통해 합성하였다. 실리콘/탄소를 음극으로 제조하여 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 분석하였다. 실리콘에 코팅된 탄소는 전기 전도도를 향상시켜 Rct값을 235 ohm (silicon)에서 30 ohm (실리콘/탄소)으로 낮추었고 리튬의 탈 삽입 시에 발생하는 실리콘의 팽창을 억제하여 전극을 안정화시키는 효과를 보여주었다. 실리콘/탄소 전극을 사용한 리튬이차전지는 1,348 mAh/g의 용량을 나타내었고 50사이클 동안 76%의 안정성을 보여주었다.

The Effect of the Ratio of C45 Carbon to Graphene on the Si/C Composite Materials Used as Anode for Lithium-ion Batteries

  • Hoang Anh Nguyen;Thi Nam Pham;Le Thanh Nguyen Huynh;Tran Ha Trang Nguyen;Viet Hai Le;Nguyen Thai Hoang;Thi Thom Nguyen;Thi Thu Trang Nguyen;Dai Lam Tran;Thi Mai Thanh Dinh
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.291-298
    • /
    • 2024
  • Due to its high theoretical capacity, Silicon (Si) has shown great potential as an anode material for lithium-ion batteries (LIBs). However, the large volume change of Si during cycling leads to poor cycling stability and low Coulombic efficiency. In this study, we synthesized Si/Carbon C45:Graphene composites using a ball-milling method with a fixed Si content (20%) and investigated the influence of the C45/Gr ratio on the electrochemical performance of the composites. The results showed that carbon C45 networks can provide good conductivity, but tend to break at Si locations, resulting in poor conductivity. However, the addition of graphene helps to reconnect the broken C45 networks, improving the conductivity of the composite. Moreover, the C45 can also act as a protective coating around Si particles, reducing the volume expansion of Si during charging/discharging cycles. The Si/C45:Gr (70:10 wt%) composite exhibits improved electrochemical performance with high capacity (~1660 mAh g-1 at 0.1 C) and cycling stability (~1370 mAh g-1 after 100 cycles). This work highlights the effective role of carbon C45 and graphene in Si/C composites for enhancing the performance of Si-based anode materials for LIBs.

Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery

  • Kim, Taek-Rae;Wu, Jing-Yu;Hu, Quan-Li;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.335-339
    • /
    • 2007
  • Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at $1000^{\circ}C$ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.

Development of Petroleum-Based Carbon Composite Materials Containing Graphite/silicon Particles and Their Application to Lithium Ion Battery Anodes

  • Noh, Soon-Young;Kim, Young-Hoon;Lee, Chul-Wee;Yoon, Song-Hun
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권2호
    • /
    • pp.116-123
    • /
    • 2011
  • Herein, a novel preparation method of highly homogeneous carbon-silicon composite materials was presented. In contrast to conventional solvent evaporation method, a milled silicon-graphite or its oxidized material were directly reacted with petroleum-derived pitch precursor. After thermal reaction under high pressure, pitch-graphite-silicon composite was prepared. Carbon-graphite-silicon composite were prepared by an air-oxidization and following carbonization. From energy dispersive spectroscopy, it was observed that small Si particles were highly embedded within carbon, which was confirmed by disappearance of Si peaks in Raman spectra. Furthermore, X-ray diffraction and Raman spectra revealed that carbon crystallinity decreased when the strongly oxidized silicon-graphite was added, which was probably due to oxygen-induced cross-linking. From the anode application in lithium ion batteries, carbon-graphite-silicon composite anode displayed a high capacity ($565\;mAh\;g^{-1}$), a good initial efficiency (68%) and an good cyclability (88% retention at 50 cycles), which were attributed to the high dispersion of Si particles within cabon. In case of the strongly oxidized silicongraphite addtion, a decrease of reversible capacity was observed due to its low crystallinity.

다양한 기공 크기 및 분포를 갖는 양극 탄소의 전극 특성 (Electrode properties of various carbon anodes containing different sizes and distributions of pores)

  • 안홍주;오한준;김인기;김세경;임창성;지충수;이재봉;박광규;고영신
    • 한국결정성장학회지
    • /
    • 제12권1호
    • /
    • pp.42-49
    • /
    • 2002
  • 기공 크기와 분포가 다른 세 종류의 전해용 탄소전극 즉, YBD-like grade carbon, YBD grade carbon, P2X grade carbon 전극의 전극 특성과 불소 전해특성을 비교하였다. 탄소전극의 특성 조사는 물리적 특성 및 1 mM의 $[[Fe(CN)_6]^\;{3-}/Fe(CN)_6$]$^{4-}$가 첨가된 0.5M $K_2SO_4$ 용액에서의 변전위 전류전압곡선과 한계확산전류밀도를 통하여 전기화학적 거동을 평가하고. 불소 전해특성은 $85^{\circ}C$의 KF.2HF용응염의 전기분해 시 임계전류밀도로 비교하였다. 이 결과 변.전위 전류전압곡선과 한계전류밀도에서는 적절한 기공을 함유한 P2X grade carbon 전극이, 불소 전해특성에서는 200~300$\mu$m의 기공 크기를 갖는 YBD-like grade carbon 전극이 우수한 전극 특성을 보였다. 이러한 전극 특성의 차이는 탄소전극 표면에 용도에 적합한 크기의 기공이 적절하게 분포되어 있음에 기인하였다.

CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성 (Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material)

  • 정민지;박지용;이종대
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.16-21
    • /
    • 2016
  • 실리콘의 부피팽창과 낮은 전기전도도를 개선하기 위하여 Silicon/Carbon/CNT 복합체를 제조하였다. Silicon/Carbon/CNT 합성물은 SBA-15를 합성한 후, 마그네슘 열 환원 반응으로 Silicon/MgO를 제조하여 Phenolic resin과 CNT를 첨가하여 탄화하는 과정을 통해 합성하였다. 제조된 Silicon/Carbon/CNT 합성물은 XRD, SEM, BET, EDS를 통해 특성을 분석하였다. 본 연구에서는 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 CNT 첨가량에 따른 전기화학적 효과를 조사하였다. $LiPF_6$ (EC:DMC:EMC=1 :1 :1 vol%) 전해액에서 Silicon/Carbon/CNT 음극활물질을 사용하여 제조한 코인셀은 CNT 함량이 7 wt% 일 때 1,718 mAh/g으로 높은 용량을 나타내었다. 코인셀의 사이클 성능은 CNT 첨가량이 증가할수록 개선되었다. 11 wt%의 CNT를 첨가한 Silicon/Carbon/CNT 음극은 두 번째 사이클 이후 83%의 높은 용량 보존율을 나타냄을 알 수 있었다.

카본을 부극으로 사용하는 $LiMnO_2$ 전지의 전기화학적 특성 (Charge/Discharge Characteristics of $LiMnO_2$ Battery using Carbon as Anode Materials)

  • 김은미;임승규;김남인;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.277-278
    • /
    • 2008
  • Orthorhombic $LiMnO_2$(o-$LiMnO_2$) has attracted public attentions as a cathode materials of Lithium ion battery because it has low cost and high theoretical discharge capacity of 285mAh $g^{-1}$. In our study, o-$LiMnO_2$ is synthesized by quenching method. To verify their phase structure, X-ray diffraction is accomplished. Test cells are assembled to check electrochemical characteristics using acquired o-$LiMnO_2$ cathode and carbon anode. Charge/Discharge cycling was carried out for 50cycles. And impedance was measured at 1, 2, 5, 10, 30, 50cycle. During cycle test, the max discharge capacity was recorded 139mAh $g^{-1}$ at 10cycle.

  • PDF

펄스 도금법에 의한 메탄연료 직접 사용을 위한 Cu-Ni-YSZ SOFC 연료극 제조 및 특성평가 (Fabrication and Characterization of Cu-Ni- YSZ SOFC Anodes for Direct Utilization of Methane via Cu pulse plating)

  • 박언우;문환;이종진;현상훈
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.807-814
    • /
    • 2008
  • The Cu-Ni-YSZ cermet anodes for direct use of methane in solid oxide fuel cells have been fabricated by electroplating Cu into the porous Ni-YSZ cermet anode. The uniform distribution of Cu in the Ni-YSZ anode could be obtained via pulse electroplating in the aqueous solution mixture of $CuSO_4{\cdot}5H_{2}O$ and ${H_2}{SO_4}$ for 30 min with 0.05 A of average applied current. The power density ($0.17\;Wcm^{-2}$) of a single cell with a Cu-Ni-YSZ anode was shown to be slightly lower in methane at $700^{\circ}C$, compared with the power density ($0.28\;Wcm^{-2}$) of a single cell with a Ni-YSZ anode. However, the performance of the Ni-YSZ anode-supported single cell was abruptly degraded over 21 h because of carbon deposition, whereas the Cu-Ni-YSZ anode-supported single cell showed the enhanced durability upto 52 h.

리튬 2차 전지용 Poly(p-phenyllene) based carbon의 열처리 온도에 따른 전기화학적 특성 (The Electrochemical Properties of Heat Treated Poly(p-phenylene) Based Carbon for Li rechargeable batteries)

  • 김주승;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.373-377
    • /
    • 1996
  • Carbon materials have become a major interestings of research directed toward the development for anode of lithium batteries of enhanced cell capacity. The purpose of this study is to research and develop poly(p-phenylene)(PPP)-based carbon as a anode of lithium secondary batteries. We have synthesized PPP from benzen by chemical reaction. And then disordered carbon materials were obtained by heat-treating PPP in a nitrogen atmosphere at 40$0^{\circ}C$ to 100$0^{\circ}C$ for 1 hour. The carbon prepared by heat treatment showed a broad x-ray diffraction peak around 2$\theta$=23$^{\circ}$. Electrodes were charged and discharged at a current density of 0.1㎃/$\textrm{cm}^2$. Excellent reversible capacity of 275㎃h/g and 97% of charge/discharge efficiency were observed heat treated PPP-based carbon a $700^{\circ}C$.

  • PDF

Cycling Behavior of Binder-Free Graphite-Lithium Intercalation Anode In AICI3-EMIC-LiCI-SOCI2 Room-Temperature Molten Salt

  • Koura, Nobuyuki;Minami, Takuto;Etoh, Keiko;Idemoto, Yasushi;Matsumoto, Futoshi
    • 전기화학회지
    • /
    • 제5권4호
    • /
    • pp.178-182
    • /
    • 2002
  • The electrochemical behavior of binder-free carbon anode, comprising of only artificial and natural graphite (AG and NG) particles, for intercalation and deintercalation of lithium ion $(Li^+)$ in aluminum chloride (AICI_3)-I-ethyl­3-methylimidazolium chloride (EMIC)-lithium chloride (LiCl)-thionyl chloride $(SOCI_2)$ room-temperature molten salt (RTMS) was studied. Binder-free carbon electrodes were fabricated using electrophoretic deposition (EPD) method. The binder-free carbon anodes provided a relatively flat charge and discharge potentials $(0\;to\;0.2V\;vs.\;Li/Li^+)$ and current capabilities $(250-340mAh{\cdot}g^{-1})$ for the intercalation and deintercalation of $Li^+$. Stability of the binder-free carbon anodes for intercalation and deintercalation of 50 cycles was confirmed.