• Title/Summary/Keyword: Carbon and manganese oxide

Search Result 45, Processing Time 0.026 seconds

Refinement of the manganese nitrate solution prepared by leaching the reduced Ferromanganeses dust with nitric acid. (용해도 차이를 이용한 질산망간 용액의 정제)

  • Cho Young-Keun;Song Young-Jun;Lee Gye-Seung;Shin Kang-Ho;Kim Hyung-Seok;Kim Yun-Che;Cho Dong-Sung
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • Mn was extracted by using a nitric acid from the reduced ferromanganese dust and the basic experiments were taken to refine the manganese nitrate solution by means of precipitation of Ca, Mg oxalate. The dust was generated in AOD process producing a medium-low carbon ferromanganese and collected in the bag filter. Manganese oxide content in the dust was about 90% and its phase was confirmed as $Mn_3$$O_4$. $Mn_3$$O_4$ in the dust was reduced to MnO by roasting with activated charcoal. The main impurities in the extracted solution prepared by leaching the reduced dust with nitric acid were Na, K, Fe, Si, Ca, Mg etc. Among them, Fe was removed by controlling pH of the solution more than 4 and precipitating $Fe(OH)_3$, simultaneously silicious material solved in the solution was removed by co-precipitation with the ferric hydroxide. Addition of 150 g reduced dust into 4N HNO3 solution 1$\ell$ was appropriate to control the pH of the solution to pH 4. To differ greatly the solubilities of manganese oxalate and calcium or magnesium oxalate in a solution containing a high concentration of Mn, pH of 4 or less and addition of ($NH_4$)$_2$$C_2$$O_4$ in equivalent with Ca and Mg are recommended. At this time, the higher temperature was the shorter the precipitation reaction time was needed.

Electrochemical Characteristics of Transition Metal Pyrophosphate as Negative Electrode Materials through Solid-state Reaction (고상법으로 합성된 리튬이온 이차전지용 음극물질로서 전이금속 피로인산화물의 전기화학적 특성)

  • Hong, Min Young;An, Sang-Jo;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.105-112
    • /
    • 2020
  • Transition metal oxide, which undergoes a conversion reaction in the negative electrode material for a lithium-ion batteries, has a high specific capacity, but still has several critical problems. In this study, manganese pyrophosphate (Mn2P2O7), nickel pyrophosphate (Ni2P2O7), and carbon composite materials with pyrophosphates as novel negative electrode materials instead of transition metal oxide, are synthesized through simple solid-state reaction. The initial reversible capacity of Mn2P2O7 and Ni2P2O7 are 333 and 340 mAh g-1, and when the composite materials are composed with carbon, the reversible capacity increases to 433 and 387 mAh g-1, respectively. The initial Coulombic efficiency is also improved by about 10%. The Mn2P2O7 and carbon composite material has the highest initial capacity and efficiency, and has the best cycle performance. Mn2P2O7 containing polyanion, has a lower specific capacity due to the large mass of polyanion compared to MnO (manganese oxide). However, since Mn2P2O7 shows a voltage curve with a slope, the charging (lithiation) voltage increases from 0.51 to 0.57 V (vs. Li/Li+), and the discharge (delithiation) voltage decreases from 1.15 to 1.01 V (vs. Li/Li+). Therefore, the voltage efficiency of the cell is improved because the voltage difference between charging and discharging is greatly reduced from 0.64 to 0.44 V, and the operating voltage of the full cell increases because the negative electrode potential is lowered during the discharging process.

Physicochemical properties and methane adsorption performance of activated carbon nanofibers with different types of metal oxides

  • Othman, Faten Ermala Che;Yusof, Norhaniza;Hasbullah, Hasrinah;Jaafar, Juhana;Ismail, Ahmad Fauzi;Nasri, Noor Shawal
    • Carbon letters
    • /
    • v.24
    • /
    • pp.82-89
    • /
    • 2017
  • In this study, composite PAN-based ACNFs embedded with MgO and $MnO_2$ were prepared by the electrospinning method. The resultant pristine ACNFs, ACNF/MgO and $ACNF/MnO_2$ were characterized in terms of their morphological changes, SSA, crystallinity and functional group with FESEM-EDX, the BET method, XRD and FTIR analysis, respectively. Results from this study showed that the SSA of the ACNF/MgO composite ($1893m^2g^{-1}$) is significantly higher than that of the pristine ACNFs and $ACNF/MnO_2$ which is 478 and $430m^2g^{-1}$, respectively. FTIR analysis showed peaks of 476 and $547cm^{-1}$, indicating the presence of MgO and $MnO_2$, respectively. The FESEM micrographs analysis showed a smooth but coarser structure in all the ACNFs. Meanwhile, the ACNF/MgO has the smallest fiber diameter ($314.38{\pm}62.42nm$) compared to other ACNFs. The presence of MgO and $MnO_2$ inside the ACNFs was also confirmed with EDX analysis as well as XRD. The adsorption capacities of each ACNF toward $CH_4$ were tested with the volumetric adsorption method in which the ACNF/MgO exhibited the highest $CH_4$ adsorption up to $2.39mmol\;g^{-1}$. Meanwhile, all the ACNF samples followed the pseudo-second order kinetic model with a $R^2$ up to 0.9996.

A New Gas-Chromatograghic Method of Organic Elemental Analysis (가스크로마토그래피에 依한 微量元素分析)

  • Kim, You-Sun;Son, Youn-Soo;Choi, Q.Won
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.188-191
    • /
    • 1964
  • A new gas-chromatographic method for determining carbon and hydrogen in organic compounds has been developed. After sample combustion was performed in a regular analytical combustion tube with an internal oxidant (a mixture of silver oxide and manganese dioxide) under a helium flow, the water produced was converted to acetylene by passing through a calcium carbide tube. The carbon dioxide and acetylene were trapped by a molecular sieve 5A column at room temperature. The trapped gases were released under programmed temperature raise up to $340^{\circ}C$ and the released gases were passed through a silica gel column. The adsorption of $CO_2$ and $C_2H_2$ in the molecular sieve 5A trapping column were found to be quantitative and the silica gel column showed an excellent resolution of $CO_2$ and $C_2H_2$ for analytical purpose. The analytical results for various known compounds based on the out-put of the thermal conductivity cell calibrated for the amounts of carbon and hydrogen contents in benzoic acid, showed average errors ${\pm}0.5%$ and ${\pm}0.33%$ for carbon and hydrogen, respectively.

  • PDF

Supercapacitive Properties of Carbon-Nano Fiber/MnO2 Composite Electrode (나노탄소섬유/MnO2 복합전극의 초고용량 캐폐시터 특성)

  • Lee, Byung Jun;Yoon, Yu Il;Ko, Jang Myoun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.94-98
    • /
    • 2008
  • In order to improve the specific capacitance of amorphous hydrous manganese oxide ($MnO_2$) for supercapacitors, it is made into composites with vapour-grown carbon nanofibers (VGCF) having the VGCF ratio as 40 wt% in the composites. The electrochemical properties of these composites are investigated in 1.0 M $Na_2SO_4$ by cyclic voltammetry (CV), impedance measurements and chronopotentiometric charger/discharger. The composite with 40 wt% VGCF shows the superior electrochemical performance, whose specific capacitance (based on the mass of $MnO_2$, $0.8mg/cm^2$) is 380 F/g at 20 mV/s and 230 F/g at 500 mV/s. Also, the cycle-life testing of this electrode carried out for 3,000 charge/discharge cycles at $2.0mA/cm^2$ shows 97% capacitance retention.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Copper/Nickel/Manganese Doped Cerium Oxides Based Catalysts for Hydrogenation of CO2

  • Toemen, Susilawati;Bakar, Wan Azelee Wan Abu;Ali, Rusmidah
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2349-2356
    • /
    • 2014
  • The recycling technology by the catalytic conversion is one of the most promising techniques for the $CO_2$ treatment of coal burning power plant flue gases. The conversion of $CO_2$ to valuable product of $CH_4$ can be used as a fuel to run the turbine for electricity generation. Through this technique, the amount of coal needed for the combustion in a gas turbine can be reduced as well as $CO_2$ emissions. Therefore, a series of catalysts based on cerium oxide doped with copper, nickel and manganese were prepared by impregnation method. From the characterization analysis, it showed that the prepared catalysts calcined at $400^{\circ}C$ were amorphous in structure with small particle size in the range below 100 nm. Meanwhile, the catalyst particles were aggregated and agglomerated with higher surface area of $286.70m^2g^{-1}$. By increasing the calcination temperature of catalysts to $1000^{\circ}C$, the particle sizes were getting bigger (> 100 nm) and having moderate crystallinity with lower surface area ($67.90m^2g^{-1}$). From the catalytic testing among all the prepared catalysts, Mn/Ce-75/$Al_2O_3$ calcined at $400^{\circ}C$ was assigned as the most potential catalyst which gave 49.05% and 56.79% $CO_2$ conversion at reaction temperature of $100^{\circ}C$ and $200^{\circ}C$, respectively.

Heavy Metal Speciation in Soils from the janghang Smelter Area (장항 제련소 지역 토양의 중금속 오염에 대한 환경광물학적 연구)

  • 여상진;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 1997
  • The Janghang smelter is the first lead, zinc and copper smelting facility in Korea which was operated for a half century from 1936 to 1989. The clay minerals and their heavy metal association in the soil profile around the smelter have been studied using XRD, EPMA, SEM-EDS, TEM, EPR and sequential extraction techniques. The soils in A horizon are highly acidic showing pH 4.45. The pH is going up with increasing depth. They have residual water contents of 1.18-1.51 wt%, loss on ignition of 6.32-7.79 wt%, and carbon contents of 0.08-0.88 wt%. Soils consist of quartz, feldspar, muscovite, kaolinite, vermiculite, biotite, chlorite, goethite and hematite in the decreasing abundance. The contents of clay minerals, especially vermiculite and chlorite, decrease with increasing depth. Sequential extraction experiments for the profile samples show that heavy metals (Zn, Cu, Pb, Cd) are highly concentrated in the A horizon of the soil profile as water-extractable (mostly amorphous), MgCl2-extractable (exchangeable in clay minerals), and organic phases. The heavy metal contents decrease with increasing depth. It suggests that the heavy metals are mainly associate with clay minerlas in an exchangeable state. It is also noted that heavy metals are highly concentrated in the manganese and iron oxide phases.

  • PDF

Community Structure, Diversity, and Vertical Distribution of Archaea Revealed by 16S rRNA Gene Analysis in the Deep Sea Sediment of the Ulleung Basin, East Sea (16S rRNA 유전자 분석방법을 이용한 동해 울릉분지 심해 퇴적물 내 고세균 군집 구조 및 다양성의 수직분포 특성연구)

  • Kim, Bo-Bae;Cho, Hye-Youn;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.309-319
    • /
    • 2010
  • To assess community structure and diversity of archaea, a clone sequencing analysis based on an archaeal 16S rRNA gene was conducted at three sediment depths of the continental slope and Ulleung Basin in the East Sea. A total of 311 and 342 clones were sequenced at the slope and basin sites, respectively. Marine Group I, which is known as the ammonia oxidizers, appeared to predominate in the surface sediment of both sites (97.3% at slope, 88.5% at basin). In the anoxic subsurface sediment of the slope and basin, the predominant archaeal group differed noticeably. Marine Benthic Group B dominated in the subsurface sediment of the slope. Marine Benthic Group D and Miscellaneous Crenarchaeotal Group were the second largest archaeal group at 8-9 cm and 18-19 cm depth, respectively. Marine Benthic Group C of Crenarchaeota occupied the highest proportion by accounting for more than 60% of total clones in the subsurface sediments of the basin site. While archaeal groups that use metal oxide as an electron acceptor were relatively more abundant at the basin sites with manganese (Mn) oxide-enriched surface sediment, archaeal groups related to the sulfur cycle were more abundant in the sulfidogenic sediments of the slope. Overall results indicate that archaeal communities in the Ulleung Basin show clear spatial variation with depth and sites according to geochemical properties the sediment. Archaeal communities also seem to play a significant role in the biogeochemical carbon (C), nitrogen (N), sulfur (S), and metal cycles at each site.

Production of High purity $Mn_3O_4$Powder by Precipitation of Calcium fluoride in the Manganese Leaching Solution (망간침출액에서 불화칼슘화에 의한 高純度 망간酸化物의 製造)

  • 한기천;이계승;최재석;신강호;조동성
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.3-8
    • /
    • 2002
  • In order to make the high purity Mn$_3$O$_4$powder for the raw material of soft ferrite, Mn is extracted from the dust and the extracted solution is refined. The dust is generated in producing a medium-low carbon ferromanganese and contains 90% Mn$_3$O$_4$. Mn$_3$O$_4$in the dust was reduced into MnO by roasting with charcoal. Injection of the 180g/L of the reduced dust into 4N HCI solution increased pH of the leaching solution higher than 5 and then a ferric hydroxide was precipitated. Because the ferric hydroxide co-precipitates with Si ion etc, Fe and Si ion was removed from the solution and the about 10% Mn solution was obtained. The solution was diluted with water to Mn-15000 ppm and $NH_4$F was injected into the diluted solution at $70^{\circ}C$ to the F-3000 ppm. As a result, Ca ion is precipitated as $CaF_2$and the residual concentration of Ca was 14 ppm. Injection of the equivalent (NH$1.5M_4$)$_2$$CO_3$solution as 2 L/min at $25^{\circ}C$ into the above solution precipitated a fine and high purity $MnCO_3$powder. The deposition was filtrated and roasted at $1000^{\circ}C$ for 2 hours. As a result, $MnCO_3$powder is converted into $Mn_3$$O_4$powder and it had $8.2\mu$m of median size. The final production is above 99% $Mn_3$$O_4$powder and it satisfied the requirement of high purity $Mn_3$$O_4$powder for a raw material of soft ferrite.