• Title/Summary/Keyword: Carbon addition

Search Result 3,162, Processing Time 0.03 seconds

Effect of Chlorine on PAC Adsorption to Remove Odor Compound in Natural Water (자연수중 이취미 물질의 분말활성탄 흡착시 염소의 영향)

  • Lee, Jeong-Kyu;Kim, Dong-Yeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.350-355
    • /
    • 2000
  • Powdered activated carbon(PAC) is widely used to control 2-MIB와 geosmin causing earthy-musty odor in water supplies. It was known that chlorine is one of the chemicals often come into contact with activated carbon. But activated carbon react with chlorine and surface oxide accumulate on carbon surface. As result, adsorption capacity of activated carbon is reduced. To investigate the effect of chlorine on the PAC's ability to adsorb 2-MIB and Geosmin, a series of experiments was carried out to show (1) the effect of aqueous chlorine doses on the ability of PAC to adsorb 2-MIB and Geosmin from Lake Heodong water. (2) the effect of delaying the chlorine addition after PAC had been added (to simulate the effect of using an alternative point of chlorine addition). As a result of experiment, as chlorine dose increased correspondingly decreased the capacity of activated carbon to adsorb 2-MIB and geosmin. Even though previously adsorbed 2-MIB and geosmin released, as result of the application of delaying the chlorine adding was more beneficial than simultaneous adding chlorine with PAC.

  • PDF

Effects of Carbon Fiber on Mechanical Behaviour of Al2O3 Porous Ceramics

  • Basnet, Bijay;Lim, Hyung Mi;Lee, Kee Sung;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.513-520
    • /
    • 2019
  • This study reports the improvement of mechanical properties of Al2O3 porous ceramics from colloidal suspension with the addition of carbon fiber by direct foaming. The initial colloidal suspension of Al2O3 was partially hydrophobized by surfactant to stabilize wet foam with the addition of carbon fiber from 2 to 8 wt% as stabilizer. The influence of carbon fiber on the air content, bubble size, pore size and pore distribution in terms of wet foam stability and physical properties of porous ceramics were discussed. The viscosity of the colloidal suspension was increased giving solid like properties with the increased in carbon fiber content. The mechanical properties of the sintered porous samples were investigated by Hertzian indentation test. The results show the wet foam stability of more than 90% corresponds to compressive loading of 156.48 N and elastic modulus of 57.44 MPa of sintered sample with 8 wt% of carbon fiber content.

The Influence of Graphitic Structure on Oxidation Reaction of Carbon Materials (탄소재료의 산화반응에 미치는 흑연구조의 영향)

  • ;Eiichi Yasuda
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.816-822
    • /
    • 1996
  • Dependence of graphitic structure on oxidation of carbon materials was discussed using furan resin-derived carbon with inorganic compounds such as SiC and TiO2 Oxidation of carbon was governed by active site. I. e surface area regardless of the degree of graphitization. When oxidation was considered for not unit weight but unit area graphitization was important factor for oxidation so that the degree of graphitization increased the oxidation rate was delayed. Graphite (tiO2 addition) and turbostratic graphite(SiC addition) were oxidized through the same mechanism. In carbon materials with different structure components more than 2 oxidation of each component was different and amorphous component without the influence of additives on the surface was selectively oxidized in the intial oxidation stage.

  • PDF

Synthesis of Mesostructured Conducting Polymer-Carbon Nanocomposites and Their Electrochemical Performance

  • Choi, Moon-Jung;Lim, Byung-Kwon;Jang, Jyong-Sik
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.200-203
    • /
    • 2008
  • A conducting polymer layer was introduced into the pore surface of mesoporous carbon via vapor infiltration of a monomer and subsequent chemical oxidative polymerization. The polypyrrole, conducting polymer has attracted considerable attention due to the high electrical conductivity and stability under ambient conditions. The mesoporous carbon-polypyrrole nanocomposite exhibited the retained porous structure, such as mesoporous carbon with a three-dimensionally connected pore system after intercalation of the polypyrrole layer. In addition, the controllable addition of pyrrole monomer can provide the mesoporous carbon-polypyrrole nanocomposites with a tunable amount of polypyrrole and texture property. The polypyrrole layer improved the electrode performance in the electrochemical double layer capacitor. This improved electrochemical performance was attributed to the high surface area, open pore system with three-dimensionally interconnected mesopores, and reversible redox behavior of the conducting polypyrrole. Furthermore, the correlation between the amount of polypyrrole and capacitance was investigated to check the effect of the polypyrrole layer on the electrochemical performance.

Physical Properties of Fine Dust Adsorption Matrix using Powder Activate Carbon (분말활성탄을 활용한 미세먼지 흡착형 경화체의 물리적 특성)

  • Lee, Won-Gyu;Kim, Yeon-Ho;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.172-173
    • /
    • 2019
  • As the damage to fine dust increased, the Republic of Korea designated fine dust as a social disaster. The composition of the fine dust is composed of carbon, sulfate, nitrate, ammonium and minerals. The cause of fine dust is naturally generated by dirt, pollen, etc. In addition, there are artificial causes such as gaseous vehicle exhaust gas emitted from the use of fossil fuel. When fine dust enters the human body through breathing, it causes various respiratory diseases and skin diseases. In IARC, fine dust was designated as a carcinogen group 1. In this research, we tried to adsorb fine dust by physical adsorption using powdered activate carbon. Powdered activate carbon is a powdered activated carbon activated in a carbonized state. Porous material with high specific surface area and low density. Experimental items were tested for density, water absorption, and fine dust concentration according to the PAC addition ratio. Basic experiments were carried out to fabricate the fine dust adsorption matrix.

  • PDF

A Study of UltraRne WC-l0wt.%Co Cemented Carbides Powders Properties Fabricated by direct Carburization (직접침탄법에 의해 제조된 초미립 WC-10wt. % Co 초경 합금 분말의 특성 연구)

  • 권대환
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.178-183
    • /
    • 1998
  • Ultrafine WC-10wt.%Co cemented carbides powders were synthesized by direct carburization. W-Co composite powders and carbon black powders were mixed by wet ball milling and dried. The mixed powders were heated to 800 $^{\circ}C$ with heating rate of 8.2$^{\circ}C$/min and held for various times in flowing $H_2$. For carbon addition of 140%, the carburization was completed by heating at 80$0^{\circ}C$ for 4 hours. The carburization time decreased with increasing amount of carbon and carburization was completed by heating at 800 $^{\circ}C$ for 2 hours with carbon addition of 150%. WC-10 wt%Co cemented carbides powders fabricated by direct carburization have nanoscale WC($\/leqq$100 nm) size.

  • PDF

Study on the characteristics of grout material using ground granulated blast furnace slag and carbon fiber

  • Kim, Daehyeon;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.361-368
    • /
    • 2019
  • This study aims to evaluate the applicability of a grout material that is mixed with carbon fiber, biogrout, ground granulated blast furnace slag (GGBS) powder and cement. Uniaxial compressive strength tests were performed on homo-gel samples at days of 1, 3, 7, 14 and 28. In addition, the variation of permeability with the mixing ratios was measured. Based on the uniaxial compressive strength test, it was confirmed that the uniaxial compressive strength increased by 1.2times when carbon fiber increased by 1%. In addition, as a result of the permeability test, it was found that when the GGBS increased by 20%, the permeability coefficient decreased by about 1.5times. Therefore, the developed grout material can be used as a cutoff grouting material in the field due to its strength and cut-off effect.

Effect of Sintering Atmosphere and Carbon Addition on Sintered Density of M3/2 Grade High Speed Steel Powder (M3/2계 고속도 공구강 분말의 소결분위기와 탄소첨가가 소결밀도에 미치는 영향)

  • Ahn, Jin-Hwan;Heo, Jong-Seo;Joo, Dong-Won;Jung, Eun;Sung, Jang-Hyun
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.265-272
    • /
    • 1998
  • For the purpose of investigating the effect of sintering atmosphere and carbon addition on sintered density and microstructural characteristics, the M3/2 grade high speed steel powders with the addition of carbon are sintered in vacuum and $20%H_2/79%N_2/l%CH_4$ gas atmosphere. With the addition of 0 wt%C, 0.45wt%C and 1.15 wt%C the optimum sintering temperatures decrease down to $1260^{\circ}C$, $1210^{\circ}C$ and $1150^{\circ}C$ respectively for the vacuum sintered specimen, and also decrease down to $1130^{\circ}C$, $1120^{\circ}C$ and $1115^{\circ}C$ for the gas sintered specimen. The threshold temperatures for full densification decrease steeply with increasing carbon content of the sintered specimen, while this temperatures are slowly decreased at high carbon content. The vacuum sintered specimen shows the primary carbides of MC and $M_6C$ type at the optimum sintering temperature, and eutectic carbides of $M_2C$ and Fe-Cr type are produced in the oversintered specimen. The gas sintered specimen exhibits M6C and Fe-Cr type primary carbides at the optimum sintering temperature. The eutectic carbides of $M_6C$ and Fe-Cr type and MX type carbonitride are shown for the oversintered specimen in the gas atmosphere. The hardness of gas sintered specimen shows high value of 830-860 Hv due to the increment of carbide precipitation.

  • PDF

Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ

  • Zhan, Jingjing;Hong, Yu;Hu, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1290-1302
    • /
    • 2016
  • Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

Improvement of Nitrogen Oxide Removal of Concrete Sidewalk Block Using by Conductive Photocatalyst (전도성 광촉매를 이용한 콘크리트 블록의 대기중 질소산화물 저감에 관한 연구)

  • Geun-Guk Bae;In-Sook Cho;Yong-Sik Ahn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.493-500
    • /
    • 2023
  • The use of TiO2 photocatalyst in the production of concrete blocks for the purpose of nitrogen oxide reduction is an issue of controversy due to the conflicting evidence on its effectiveness. Efforts have been made to reduce the level of nitrogen oxides in the environment by using of titanium dioxide (TiO2). This study examined the effect of incorporating activated carbon into concrete blocks on the reduction of nitrogen oxides released into the atmosphere and the durability of the blocks. The efficiency of photocatalyst was enhanced through the addition of a surrounding conductive substance. The addition of activated carbon resulted in a significant increase in the electrical conductivity of photocatalytic blocks and improved durability. The cement mixture using 5 % TiO2 and 15 % activated carbon exhibited the optimal mixing ratio for the purpose of nitrogen oxide removal. The effect of the addition of conductive carbon to the photocatalytic blocks was discussed with the results of conductivity, flexural and comprssive strength and nitrogen oxide removal test. The relationship between the addition of conductive carbon to the photocatalytic blocks and its resulting effects have been studied by several tests, including conductivity, flexural and compressive strength, and nitrogen oxide removal.