• Title/Summary/Keyword: Carbon absorption and emission

Search Result 73, Processing Time 0.03 seconds

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

Study on Absorption Characteristics of $CO_2$ in Aqueous Alkanolamine Solutions (알카놀아민 수용액을 이용한 이산화탄소 흡수특성 연구)

  • Oh, Sang-Kyo;Rhee, Young-Woo;Nam, Sung-Chan;Yoon, Yeo-Il;Kim, Young-Eun
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.241-246
    • /
    • 2008
  • Increase of $CO_2$ by using fossil fuels makes mainly global warming and the international efforts to reduce the $CO_2$ emission is being promoted. Absorption process using aqueous alkanolamine solution to remove acid components in the mixed gases has been used commercially. This method was used to remove $CO_2$ in the flue gas in recent years. $CO_2$ Absorption characteristics of several aqueous alkanolamine solutions such as MEA, DEA and AMP was studied by measuring vapor-liquid-equilibrium(VLE) and absorption velocity in this study. VLE measuring equipment, shell and reactor type, was used to acquire VLE data, equilibrium $CO_2$ pressure(${P_{CO_2}}^*$) and time at each pulse gas input. We also acquired the $CO_2$ absorption velocity by measuring the time to arrive the VLE at $40{\sim}80^{\circ}C$ and first gas input. The $CO_2$ absorption capacity of MEA 10wt% solution was higher than two alkanolamine solutions at $40^{\circ}C$ and the equilibrium $CO_2$ loading was 0.5. Absorption capacity was excellent as follows; AMP>DEA>MEA. But absorption velocity was fast as follows; MEA>AMP>DEA. Though good absorbent was considered by many variables, absorption velocity and capacity was more important factor.

Optimization of Bio-Methane Gas Enrichment Process for City Gas Supply (도시가스용 바이오가스 메탄농축공정 최적화)

  • Ko, Sang-Wook;Lee, Kyung Jin;Moon, Myong Hwan;Baek, Ju Hong;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.76-83
    • /
    • 2017
  • Biogas, combine with ever-increasing natural gas demand, has been on the center stage in South Korea for the early part of twenty first century in an effort to reduce the emission of global warming gases. With the passage of legal system of City Gas Business Law in 2014, the biogas has its place of production and distribution to consumers. However, it has a room for its technological improvements in terms of enrichment, by separating carbon dioxide and removing impurities efficiently. For these improvements, four different methane enrichment processes were tested in this study; membrane separation, water absorption, Chemical Absorption and Adsorption. A variety of operation scenarios were applied to the processes and the best practices were drawn out. The optimum process was selected based on case study results. Methane produced in this study showed 97% purity and 98% recovery rate, which meets the requirements of the City Gas quality standards.

A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite

  • Paul, Rima;Kumbhakar, Pathik;Mitra, Apurba K.
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.71-82
    • /
    • 2013
  • A simple chemical precipitation technique is reported for the synthesis of a hybrid nanostructure of single-wall carbon nanotubes (SWCNT) and titania ($TiO_2$) nanocrystals of average size 5 nm, which may be useful as a prominent photocatalytic material with improved functionality. The synthesized hybrid structure has been characterized by transmission electron microscopy (HRTEM), energy-dispersive X-ray analysis (EDAX), powder X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It is clearly revealed that nearly monodispersed titania nanocrystals (anatase phase) of average size 5 nm decorate the surfaces of SWCNT bundles. The UV-vis absorption study shows a blue shift of 16 nm in the absorbance peak position of the composite material compared to the unmodified SWCNTs. The photoluminescence study shows a violet-blue emission in the range of 325-500 nm with a peak emission at 400 nm. The low temperature electrical transport property of the synthesized nanomaterial has been studied between 77-300 K. The DC conductivity shows semiconductor-like characteristics with conductivity increasing sharply with temperature in the range of 175-300 K. Such nanocomposites may find wide applications as improved photocatalyst due to transfer of photo-ejected electrons from $TiO_2$ to SWCNT, thus reducing recombination, with the SWCNT scaffold providing a firm and better positioning of the catalytic material.

Technologies for Volatile Organic Compounds(VOCs) Treatment (휘발성 유기 화합물(VOCs) 처리 기술)

  • 서봉국;나영수;송승구
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.825-833
    • /
    • 2003
  • The emission of volatile organic compounds (VOCs) generated from painting and coating processes is a worldwide problem as contributing factors to the development of photochemical smog and other environmental problems. Common methods of reducing VOC emissions are adsorption on activated carbon, membrane separation, absorption, incineration, or catalytic oxidation. In this article, the environmental issues caused by VOC emissions and the trend of legislation against such emissions will be surveyed first. Several conventional control technologies will then be summarized and the characteristics of each process will be introduced. Lastly, some examples will be described to show the hybrid processes which have been industrially applied for the recovery of VOC.

Organic carbon distribution and cycling in the Quercus glauca forest at Gotjawal wetland, Jeju Island, Korea

  • Han, Young-Sub;Lee, Eung-Pill;Park, Jae-Hoon;Lee, Seung-Yeon;Lee, Soo-In;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.60-69
    • /
    • 2018
  • Background: This study was conducted from March 2011 to February 2013 in order to evaluate the ecosystem value by examining the organic carbon distribution and cycling in the Quercus glauca forest, evergreen oak community at Seonheul-Gotjawal, Jeju Island. Results: The amount of organic carbon distribution was $124.5ton\;C\;ha^{-1}$ in 2011 and $132.63ton\;C\;ha^{-1}$ in 2012 for aboveground biomass. And it was $31.13ton\;C\;ha^{-1}$ in 2011 and $33.16ton\;C\;ha^{-1}$ in 2012 for belowground biomass. In total, the amount of organic carbon distribution in plants was 155.63 and $165.79ton\;C\;ha^{-1}$ in 2011 and 2012, respectively. In 2011 and 2012 respectively, the amount of organic carbon distribution was 3.61 and $6.39ton\;C\;ha^{-1}$ in the forest floor and it was 78.89 and $100.71ton\;C\;ha^{-1}$ in the soil. As shown, most carbon was distributed in plants. Overall, the amount of organic carbon distribution of the Q. glauca forest was $238.13ton\;C\;ha^{-1}$ in 2011 and $272.89ton\;C\;ha^{-1}$ in 2012. In 2011, the amount of organic carbon fixed in plants through photosynthesis (NPP) was $14.22ton\;C\;ha^{-1}\;year^{-1}$ and the amount of carbon emission of soil respiration was $16.77ton\;C\;ha^{-1}\;year^{-1}$. The net ecosystem production (NEP) absorbed by the Q. glauca forest from the atmosphere was $5ton\;C\;ha^{-1}\;year^{-1}$. Conclusions: The carbon storage value based on such organic carbon distribution was estimated about $23.81mil\;won\;ha^{-1}$ in 2011 and $27.29mil\;won\;ha^{-1}$ in 2012, showing an annual increment of carbon storage value by $3.48mil\;won\;ha^{-1}$. The carbon absorption value based on such NEP was estimated about $500,000won\;ha^{-1}\;year^{-1}$.

Experiments on a Regenerator with Thermosyphon for Absorption Heat Pumps (기포 펌프를 적용한 흡수식 열펌프용 고온 재생기의 작동 특성 실험)

  • Park, C.W.;Jurng, J.;Nam, P.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.463-472
    • /
    • 1996
  • Experiments were carried out to study the operation characteristics of a regenerator with a thermo-syphon pump and a surface-flame burner for a lithium bromide (LiBr)-water absorption heat pump. A cylindrical-shape metal-fiber burner and commercial grade propane were used. The emission of carbon monoxide and nitric oxide was measured by a combustion gas analyzer. Ther regeneration rate of water vapor as a refrigerant was measured. It could be as a reference value showing the performance of the regenerator. The circulation rate of the LiBr-water solution was also measured from both the tanks for the weak-and the strong-solution. Using a refractometer, the LiBr concetration in the solution was calculated from the measured refractory index of the solution. Temperature of the solution and the condensed water was recorded at several points in the experimental apparatus with thermocouples, using a personal computer. This data collecting system for measuring temperature was calibrated with a set of standard thermometers. The generating rate of water vapor as refrigerant increased linearly with heat supplied. It was about 4.0g/s with the heat supplied at a rate of 16,500kcal/h. The circulation rate of LiBr solution also increases with the heat supplied. The difference in LiBr concentrations between the weak and the strong solution was in the range of 1 to 5% when the concentration of the strong solution was about 60%. It was dependent upon both the heat supplied and the circulation rate of the solution. The initial concentration and the level of the LiBr solution in the regenerator were measured and recorded before experiments. The effect of them on the generating rate of water vapor and the circulation rate of the solution was also studied. The generating rate of water vapor was not strongly dependent upon both the level of the LiBr solution and the initial LiBr concentration. However, the concentration difference of the solution increases with the initial level of the LiBr solution.

  • PDF

Application of LiDAR Data & High-Resolution Satellite Image for Calculate Forest Biomass (산림바이오매스 산정을 위한 LiDAR 자료와 고해상도 위성영상 활용)

  • Lee, Hyun-Jik;Ru, Ji-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.53-63
    • /
    • 2012
  • As a result of the economical loss caused by unusual climate changes resulting from emission of excessive green house gases such as carbon dioxide which is expected to account for 5~20% of the world GDP by 2100, researching technologies regarding the reduction of carbon dioxide emission is being favored worldwide as a part of the high value-added industry. As one of the Annex II countries of Kyoto Protocol of 1997 that should keep the average $CO_2$ emission rate of 5% by 2013, South Korea is also dedicated to the researches and industries of $CO_2$ emission reduction. In this study, Application of LiDAR data & KOMPSAT-2 satellite image for calculated forest Biomass. Raw LiDAR data's tree numbers and tree-high with field survey data resulted in 90% similarity of objects and an average of 0.3m difference in tree-high. Calculating the forest biomass through forest type information categorized as KOMPSAT-2 image and LiDAR data's tree-high data of tree enabled the estimation of $CO_2$ absorption and forest biomass of forest type, The similarity between the field survey average of 90% or higher were analyzed.

Estimation of Gas-particle partitioning Coefficients (Kp) of Carcinogenic polycyclic Aromatic hydrocarbons in Carbonaceous Aerosols Collected at Chiang - Mai, Bangkok and hat-Yai, Thailand

  • Pongpiachan, Siwatt;Ho, Kin Fai;Cao, Junji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2461-2476
    • /
    • 2013
  • To assess environmental contamination with carcinogens, carbonaceous compounds, water-soluble ionic species and trace gaseous species were identified and quantified every three hours for three days st three different atmospheric layer at the heart of chiang-Mai, bangkok and hat-Yai from December 2006 to February 2007. A DRI model 2001 Themal/Optical Carbon Analyzer with the IMPROVE thermal/optical reflectance (TOR) protocol was used to quantify the organic carbon(OC) and elemental carbon content in $PM_{10}$. Diurnal and vertical variability was also carefully investigated. In general, OC and EC contenttration shoeed the highest values at the monitoring period o 21.00-00.00 as consequences of human activities at night bazaar coupled with reduction of mixing layer, decreased wind speed and termination of photolysis nighttime. Morning peaks of carboaceous compounds were observed during the sampling period of 06:00 -09:00, emphasizing the main contribution of traffic emission in the three cities. The estimation of incremental lifetime partculate matter exposure (ILPE) raises concern of high risk of carbonaceous accumulation over workers and residents living close to the observatory sites. The average values of incremental lifrtime particulate matter exposure (ILPE) of total carbon at Baiyoke Suit Hotel and Baiyoke Sky Hotel are approsimately ten time shigher then those air sample collected at prince of songkla University Hat-Yai campus corpse incinerator and fish-can maufacturing factory but only slightly higher than those of rice straw burnig in Songkla province. This indicates a high risk of developing lung cancer and other respiratory diseases across workers and residents living in high buildings located in Pratunam area. Using knowledge of carbonaceous fractions in $PM_{10}$, one can estimate the gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Dachs-Eisenreich model highlights the crucial role of adsorption in gas-particle partitioning of low molecular weight PAHs, whereas both absorption and adsorption tend to account for gas-particle partitioning of high molecular weight PAHs in urban residential zones of Thailand. Interestingly, the absorption mode alone plays a minor role in gas-partcle partitiining of PAHs in Chiang-Mai, Bangkok and hat-Yai.

Evaluation on the Greenhouse Gas Emission According to the Intake Levels of Total Mixed Rations of Hanwoo Cow (급여수준에 따른 한우 암소의 온실가스 배출량 평가)

  • Kim, Du-Ri;Ha, Jae-Jung;Kim, Jong-Taek;Song, Young-Han
    • Journal of Animal Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.475-480
    • /
    • 2011
  • This study was conducted to investigate the effects of different feeding level of TDN (Total Digestible Nutrients) on the generation of main greenhouse gases such as carbon dioxide and methane in Hanwoo cows. The diet TDN (kg) adjusted to achieve ADG of 0 g/day (Control), 200 g/day (T1), and 400 g/day (T2) of the maintenance level TMR (Total Mixed Ration) delivered twice a day at 08:30 and 17:30. Cow are housed in a respiration chamber and the environmental temperature was maintained at $20^{\circ}C$. The gases were measured for 24 hours using the multi-detector instrument Mamos-300. The analyzed methane emissions of T1 and T2 were 33.5% and 69.6% higher than control, respectively, and the carbon dioxide emissions were 21.1% and 40.6% higher than control. Also, the hourly pattern of carbon dioxide and methane production were showed very similar emission. Gas production showed peak after 1 hour of feeding and this gap was wider in the afternoon than in the morning hours. It is clearly conducted that $CO_2$ and $CH_4$ emissions were different by limited intake levels of feed.