• Title/Summary/Keyword: Carbon Source

Search Result 2,750, Processing Time 0.039 seconds

Electron Emission Property of Carbon Nanotubes Grown Using Different Source Gases

  • Han, Jae-Hee;Lee, Tae-Young;Yoo, Ji-Beom;Park, Chong-Yun;Jung, Tae-Won;Yu, Se-Gi;Yi, Whi-Kun;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.658-661
    • /
    • 2002
  • Chemical species during growth of carbon nanotubes (CNTs) in direct current-plasma enhanced chemical vapor deposition were studied in details using $C_3H_4-NH_3$ and $CO-NH_3$ mixtures through optical emission spectroscopy (OES). In the $C_3H_4-NH_3$ system, the relative intensities of CN (388.3 nm) and CH (431.4 nm) decreased and that of $C_2$ (436 nm) increased, leading to $sp^2$-graphization into the CNT structure, leading to improvement of field emission property of CNTs. In the $CO-NH_3$ system, the trend is completely reversed. Attributing to the atomic oxygen for helping the graphitization of carbon, CNTs could be grown under the flow rate of CO (180 sccm)-$NH_3$ (10 sccm). Through these results, we suggest the growth mechanism in our system.

  • PDF

Studies of Cyclosporin A Biosynthesis under the Conditions of Limited Dissolved Oxygen or Carbon Source in Fed-batch Culture (용존산소 제한 또는 탄소원 제한 조건의 유가식배양에서의 Cyclosporin A 생합성 연구)

  • 전계택;박성관;권호균;정연호;정용섭;장용근;이영행
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.203-208
    • /
    • 1998
  • We investigated the effects of dissolved oxygen (D.O.) and fructose (C-source) on cell growth and biosynthesis of cyclosporin A (CyA) produced as a secondary metabolite by a wild-type filamentous fungus, Tolypocladium inflatum. This was performed by controlling the level of D.O. and the residual C-source, as required, through adjustment of medium flow rate, medium concentration and agitation rate in fed-batch cultures. CyA production was furned out to be maximal, when D.O. level was controlled around 10% saturated D.O. and concentration of the C-source was maintained sufficiently low (below 2 g/L) not to cause carbon catabolite repression. Under this culture condition, we obtained the highest values of CyA concentration (507.14 mg/L), Qp (2.11 mg CyA/L/hr), $Y_x/s$ (0.49 g DCW/g fructose), $Y_p/s$<(22.56 mg CyA/g fructose), and YTEX>$_p/x$ (48.31 mg CyA/g DCW), but relatively lower values of cell concentration (11.98 g DCW/L) and cell productivity (0.043 g DCW/L/hr), in comparison with other parallel fed-batch fermentation conditions. These results implied that, in the carbon-limited culture with 10% saturated D.O. level, the producer microorganism utilized the C-source more efficiently for secondary metabolism.

  • PDF

Use of Stable Carbon Isotope Ratios (${\delta}^{13}$C) for Identification of the Origin Organic Carbon in Benthic Food Webs in Youngil Bay, Korea

  • Lee, Won-Chan;Choi, Woo-Jeung;Lee, Pil-Yong;Kang, Chang-Keun
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.124-127
    • /
    • 2000
  • The analysis of stable carbon isotope ratios for benthic fauna was applied to identify the source of carbon in benthic food webs in Youngil Bay, Korea. The ${\delta}^{13}$C values of 9 invertebrate species collected in this area showed a narrow range between -20.5 and -16.3%$_o$ with a mean of-18.1 (${\pm}$1.1)"%$_o$. The results suggest that the major source of organic carbon for the benthic fauna of the lower estuarine reaches and the oceanic sites is autochthonous marine particulate organic matter. The contribution of organic matter from terrestrial and riverine sources to the diet of the benthic fauna in this area appears to be minor, despite the considerable inflow of riverine waters.

  • PDF

Adaptive Control of Denitrification by the Extended Kalman Filter in a Sequencing Batch Reactor (확장형칼만필터에 의한 연속회분식반응조의 탈질 적응제어)

  • Kim, Dong Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.6
    • /
    • pp.829-836
    • /
    • 2006
  • The reaction rate of denitrification is primarily affected by the utilization of organics that are usually limited in the anoxic period in a sequencing batch reactor. It is necessary to add an extemal carbon source for sufficient denitrification. An adaptive model of state-space based on the extended Kalman filter is applied to manipulate the dosage rate of extemal carbon automatically. Control strategies for denitrification have been studied to improve control performance through simulations. The normal control strategy of the constant set-point results in the overdosage of external carbon and deterioration of water quality. To prevent the overdosage of external carbon, improved control strategies such as the constrained control action, variable set-point, and variable set-point after dissolved oxygen depletion are required. More stable control is obtained through the application of the variable set-point after dissolved oxygen depletion. The converging value of the estimated denitrification coefficient reflects conditions in the reactor.

Removal Characteristics of Nitrogen and Phosphorus in swine wastewater by Using Acetic acid on the SBR Process (SBR에서 아세트산을 이용한 양돈폐수의 질소·인 제거 특성)

  • Huh, Mock;Kang, Jin-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.84-93
    • /
    • 2004
  • This study was performed : 1) to find the suitable HRT(hydralic retention time), 2) to evaluate the effects of the ratio of mixing/aeration time and injection time of external carbon source, for the removal of organics, nitrogen and phosphorus in swine wastewater by SBR(sequencing batch reactor process), which is one of the biological treatment process. The result of this study were summarized as follows : (1) As the ratio of mixing/aeration time was higher, $NH_4{^+}-N$ removal efficiency was increased and it was increased with increasing injection time of external carbon source because nitrification was affected by denitrification microbes propagation when injection time of external carbon soruce was shorted. T-N removal efficiency was increased with increasing the ratio of mixing/aeration time and injection time of external carbon source. (2) The T-P removal efficiency showed a great difference in each operating condition, and it was increased with increasing the ratio of mixing/aeration time increased and when the injection time of external carbon source was shorted because denitrification was done with effect by denitrification microbes propagation. (3) The highest removal efficiency of organic and nitrogen were obtained by the operating condition of Run 4-1(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 15hours) and T-P were obtained by the operation condition of Run 4-2(the ratio of mixing/aeration time : 16.5/5.5, injection time of external carbon source : 3hours), and efficiency(effluent concentration)of $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, T-N and T-P in the treated water was 96.1%, 87.7%, 90.6%, 86.6% and 84.5%, respectively.

  • PDF

Mapping of Carbon Flow Distribution in the Central Metabolic Pathways of Clostridium cellulolyticum: Direct Comparison of Bacterial Metabolism with a Soluble versus an Insoluble Carbon Source

  • DESVAUX, MICKAEL,
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1200-1210
    • /
    • 2004
  • Metabolic flux analysis was established by adapting previous stoichiometric model developed during growth with cellulose to cell grown with cellobiose for further direct comparison of the bacterial metabolism. In carbon limitation with cellobiose, a shift from acetate-ethanol fermentation to ethanol-lactate fermentation is observed and the pyruvate overflow is much higher than with cellulose. In nitrogen limitation with cellobiose, the cellodextrin and exopolysaccharide overflows are much higher than on cellulose. In carbon and nitrogen saturation with cellobiose, the cellodextrin, exopolysaccharide, and free amino acids overflows reach the highest levels observed but all remain limited on cellulose. By completely shunting the cellulosome, the use of cellobiose allows to reach much higher carbon consumption rates which, in return, highlights the metabolic limitation of C. cellulolyticum. Therefore, the physical nature of the carbon source has a profound impact on the metabolism of C. cellulolyticum and most probably of other cellulolytic bacteria. For cellulolytic bacteria, the use of soluble carbon substrate must carefully be taken into consideration for the interpretation of results. Direct comparison of metabolic flux analysis from cellobiose and cellulose revealed the importance of cellulosome, phosphoglucomutase and pyruvate-ferredoxin oxidoreductase in the distribution of carbon flow in the central metabolism. In the light of these findings, future directions for improvement of cellulose catabolism by this bacterium are discussed.

Carbon Nanotube Growth on Invar Alloy using Coal Tar Pitch (콜타르피치를 이용한 Invar 합금 위 탄소나노튜브의 합성)

  • Kim, Joon-Woo;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.516-522
    • /
    • 2017
  • We report the growth of carbon nanotubes (CNT) on Invar-42 plates using coal tar pitch (CTP) by chemical vapor deposition (CVD) method. The solid phase CTP is used as an inexpensive carbon source since it produces a bunch of hydrocarbon gases such as $CH_4$ and other $C_xH_v$ by thermal decomposition over $450^{\circ}C$. The Invar-42 is a representative Ni-based ferrous alloy and can be used repetitively as a substrate for CNT growth because Ni and Fe are used as very active catalytic elements. We changed mixing ratio of carrier gases, argon and hydrogen, and temperature of growth region. It was found that the optimum gas ratio and temperature for high quality CNT growth are $Ar:H_2=400:400$ sccm and $1000^{\circ}C$, respectively. In addition, the carbon nanoball (CNB) was also obtained by just changing the mixing ratio to $Ar:H_2=100:600$ sccm. Finally, CTP can be employed as a versatile carbon source to produce various carbon-based nanomaterials, such as CNT and CNB.

A study on determining the optimum mixing ratio of carbon source for anaerobic treatment (혐기성처리를 위한 탄소원의 최적 혼합비율 결정에 관한 연구)

  • 김은호;장성호
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 1999
  • The purpose of this study were to determine the optimum mixing ratio of sewage sludge and papermill sludge as carbon source required to SRB in treating abandoned mine drainage with natural purification wetland. If mixing sewage sludge/papermill sludge 2.0 SO42- reduced 46.2%, and then 30% in mixing ratio 0.5.Because sewage sludge was faster biodegradability than papermill sludge, effluent SCOD was 40mg/L in mixing ratio 0.5, and after that was all but regular. pH and ORP were almost neutral and -160mV, but after that was all but regular and it indicated that SRB activity was suitable. Fe removal rate was 60% in mixing ratio 2.0, and 54% in mixing ratio 0.5. In point of carbon source supply, It indicated that mixing ration 0.5 was considered as the most appropriate, because degradability of swewage sludge under short time was higher than that of papermill sludge.

  • PDF

A Study on the Application of District Heating System using Sewage Source (하수열원을 이용한 지역난방 적용성 검토)

  • Kim, Sang-Hun;Kim, Dong-Jin;Choi, Dong-Kyoo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.928-933
    • /
    • 2009
  • The purpose of this study is to examine the energy consumption, carbon dioxide emission & energy cost of district heating using sewage source. The annual TOE of heat pump using sewage source save 37.1 percent than city gas boiler. And annual carbon dioxide emission of heat pump cut down 41.3 percent than city gas boiler. If it charges the rate schedule for district heating to apartment resident, collected amount are 3,127,170 thousand won. As energy cost of heat pump & circulation pump are 1,378,072 thousand won. the profits are 1,749,098 thousand won. As payback period is 8.97years, applicability is low level. However, it has advantages in energy consumption, carbon dioxide emission & energy cost. Therefore, it needs to proceed through government assistance.

  • PDF