• Title/Summary/Keyword: Carbon Source

Search Result 2,755, Processing Time 0.035 seconds

Effect of Heavy Metal on Syngas Fermentation Using Clostridium autoethanogenum (Clostridium autoethanogenum을 이용한 합성가스 발효에 대한 중금속의 영향)

  • Im, Hongrae;Kwon, Rokgyu;Park, Soeun;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.423-428
    • /
    • 2020
  • In this work, we investigated the effect of the concentration of medium components on microbial growth and ethanol production in order to improve ethanol productivity in the Clostridium autoethanogenum culture process using syngas as a sole carbon source. Molybenum, nickel and cobalt (as heavy metal ions) were selected as examined components, and the effects of components concentration on the cell growth and ethanol production was examined. Among molybdenum concentrations of 0, 0.001, 0.01 and 0.1 g/L. a slight increase in ethanol production was observed at 0.001 g/L, but significant differences in the microbial growth and ethanol production were not observed in the examined concentration range. In the case of nickel concentration of 0, 0.001, 0.01 and 0.1 g/L, the change in the microbial growth and ethanol production was investigated, and it was found that the ethanol production using 0.001 g/L increased by 26% compared to that of using the basal medium concentration (0.01g/L). The effect of cobalt concentrations (0, 0.018, 0.18 and 1.8 g/L) on the microbial growth and ethanol production was also investigated, and the inhibition of microbial growth was observed when the cobalt usage was over 0.18 g/L. In conclusion, cobalt did not show any further improvement of ethanol production by changing concentration, however, molybdenum and nickel showed increases in the produced ethanol concentration compared to that of using 1/10 times of the basal medium concentration.

Influence of denitrified biofloc water on the survival rate and physiological characteristics of Pacific white shrimp juveniles, Litopenaeus vannamei (바이오플락 탈질수가 어린 흰다리새우, Litopenaeus vannamei의 생존율 및 생리특성에 미치는 영향)

  • Kim, Su-Kyoung;Jang, Jin Woo;Jo, Yong Rok;Kim, Jun-Hwan;Kim, Su Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.136-143
    • /
    • 2019
  • This study investigates the effect of denitrified biofloc water on changes in the water quality parameters and the physiological characteristics of shrimps. Biofloc rearing water contains a large number of microorganisms and can rapidly stabilize the water quality and energy saving if reusable due to high water temperatures. Rearing water contain floating bacteria with both aerobic and anaerobic bacteria. Therefore, when the carbon source is added in limited air supply, the anaerobic state is activated and the denitrification process is possible. In this study, the denitrification water had the following properties: ammonia (6.9 mg L-1), nitrite (0.3 mg L-1), nitrate concentration (9.2 mg L-1), high pH (8.42) and alkalinity (590 mg L-1). The experimental group consisted of seawater (SW, control), a mixture of Seawater and denitrified biofloc water (DNW) in the ratio of 3:1, 1:1 and DNW only. All experiments were done in triplicate. As a result, the survival rate never changed even when 100% of the denitrification water was utilized. However, a body fluid analysis showed that creatine and BUN were increased due to index of stress and the tissue damage resulting from the high denitrified water content. Body fluid ions (Na+, K+, and Cl-) significantly decreased as the denitrified water content increased. It was recommended that the denitrification water be mixed with a certain ratio (less than 50%) in the future as it may affect the osmotic pressure control in shrimps.

DNDC Modeling for Greenhouse Gases Emission in Rice Paddy of South Korea and the Effect of Flooding Management Change and RCP 8.5 Scenario (RCP 8.5 시나리오와 관수 기법의 변화에 따른 논에서의 온실가스 배출 변화의 DNDC 모델을 통한 모의)

  • Min, Hyungi;Kim, Min-Suk;Kim, Jeong-Gyu;Hwang, Wonjae
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.189-198
    • /
    • 2018
  • In 21th century, climate change is one of the fundamental issue. Greenhouses gases are pointed as the main cause of climate change. Soil play a vital role of carbon sink and also can be a huge source of greenhouse gases defense on the management. Flux of greenhouse gases is not the only factor can be changed by climate change. Climate change can alter proper management. Temperature change will modify crop planting and harvesting date. Other management skills like fertilizer, manure, irrigation, tillage can also be changed with climate change. In this study, greenhouse gases emission in rice paddy in South Korea is simulated with DNDC model from 2011 - 2100 years. Climate for future is simulated with RCP 8.5 scenario for understanding the effect of climate change to greenhouse gases emission. Various rice paddy flooding techniques were applied to find proper management for future management. With conventional flooding technique, climate change increase greenhouse gases emission highly. Marginal flooding can decrease large amount of greenhouse gases emission and even it still increases with climate change, it has the smallest increasing ratio. If we suppose the flooding technique will change for best grain yield, dominant flooding technique will be different from conventional flooding to marginal flooding. The management change will reduce greenhouse gases emission. The result of study shows the possibility to increase greenhouse gases emission with climate change and climate change adaptation can show apposite result compared without the adaptation.

Isolation and Identification of Pentachlorophenol-degrading Bacteria (Pentachlorophenol을 분해하는 세균의 분리와 동정)

  • Park, Young-Doo;Eum, Jin-Seong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.261-265
    • /
    • 2000
  • To develope the enhanced bacterial strains capable of biodegradation for various chlorinated aromatic compounds, 100 bacterial strains were isolated from soil samples of suburbs of Taejon, Cheongju, and Jeonju by the enrichment culture. These strains can degrade pentachlorophenol (PCP) which is a kind of wood preservatives. Nineteen strains of the isolates were selected by fast colony-forming rate on solid minimal media containing PCP as an only source of carbon and energy. These strains were identified to genus level. Fifteen strains were identified as Pseudomonas, 1 strain as Acinetobacter and 3 strains were not. Genus Alcaligenes strains were not found among them. Pseudomonas sp. MU135. MU139, MU163 and MU 184 were able to degrade for 4 kinds of chlorinated compounds, PCP, 2,4-D, MCPA and 3CB. Pseudomonas sp. If was observed that MU139 exhibits the highest degradability in liquid minimal media at 72 hours after inoculation. Pseudomoans sp. MU147, MU177, MU184 and MU192 also degraded the compounds at higher rates. As the results, Pseudomonas sp. MU139 and unidentified strain MU184 had biodegrability for broad range of chlorinated compounds and higher rates of degradation for PCP.

  • PDF

Pink Pigmented Facultative Methylotrophic Bacteria(PPFMs): Introduction to Current Concepts (분홍색 색소를 형성하는 methylotrophic acteria(PPFMs): 최근 경향소개)

  • Munusamy, Madhaiyan;Sa, Tongmin;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.266-287
    • /
    • 2004
  • The non infecting, plant associated bacteria have attracted increased attention for stimulating plant growth and as environmental friendly plant protecting agents. Pink-pigmented facultatively methylotrophic bacteria (PPFMs), classified as Methylobacterium spp., are persistent colonizers of plant leaf surfaces. As the leaves of most or all plants harbor PPFMs that utilize leaf methanol as their sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. Although they are not well known, these bacteria are co-evolved, interacting partners in plant metabolism. This claim is supported, for example, by the following observations: (1) PPFMs are seed-transmitted, (2) PPFMs are frequently found in putatively axenic cell cultures, (3) Low numbers of seed-borne PPFMs correlate with low germinability, (4) Plants with reduced numbers of PPFM show elevated shoot/root ratios, (5) Foliar application of PPFMs to soybean during pod fill enhances seed set and yield, (6) Liverwort tissue in culture requires PPFM-produced vitamin B12 for growth, (7) treated plants to suppress or decrease disease incidence of sheath blight caused by Rhizoctonia solani in rice, and (8) the PPFM inoculation induced number of stomata, chlorophyll concentration and malic acid content, they led to increased photosynthetic activity. Methylobacterium spp. are bacterial symbionts of plants, shown previously to participate in plant metabolism by consuming plant waste products and producing metabolites useful to the plant. There are reports that inform about the beneficial interactions between this group of bacteria and plants. Screening of such kind of bacteria having immense plant growth promoting activities like nitrogen fixation, phytohormone production, alleviating water stress to the plants can be successfully isolated and characterized and integration of such kind of organism in crop production will lead to increased productivity.

An Identification of Enterobacter sp. Isolated from Contaminated Ginseng and Inhibition Effect of Ginseng Saponin on Its Growth (오염된 인삼으로부터 분리된 Enterobacter sp.의 동정 및 인삼사포닌의 균 생육억제효과)

  • 곽이성;이종태;여운형
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.1
    • /
    • pp.26-30
    • /
    • 2002
  • A bacterium isolated from contaminated white ginseng was indentified by using API kit and electron microscope. The isolate was determined as rod shaped bacterium having 0.6-1.0 ${\mu}{\textrm}{m}$ in diameter and 1.2-3.0 ${\mu}{\textrm}{m}$ in length. It had motility by flagellum. The isolate had $\beta$-galactosidase, arginine dihydrolase and omithin decarboxylase. It used citrate as sole carbon source but not produced H$_2$S. It also fermented glucose, manitol, sorbitol, rhamnose, sucrose, melibiose, arabinose and amygdalin. The isolate was identified as Enterobacter sp by the above API kit analysis and electron microscopy observation. Ginseng saponin was added to culture of Enterobacter sp. in order to investigate saponin's influence on its growth. The strain was incubated at 38$^{\circ}C$ for 3 days after addition of 0.05, 0.5, 2.0 and 4.0% (w/v) of saponin, respectively and the growth rates were investigated. The relative bacterial growth rates showed 75.0, 37.5, 7.5 and 0.5%, respectively, when compared with 100% of saponin non-added group. These results suggest that the growth of Enterobacter sp. is inhibited by saponin with the concentration dependency.

Optimization of Medium for $\beta$-Mannanase Production by Aspergillus oryzae (Aspergillus oryzae에 의한 $\beta$-Mannanase 생산배지의 최적화)

  • 오덕근;김종화이태규
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.565-571
    • /
    • 1996
  • Medium optimization for ${\beta}$-mannanase production by Aspergillus oryzae ATCC 2114 was performed. Effect of carbon source (locust bean gum) concentration on ${\beta}$-mannanase production was investigated. Above 20 g/L locust bean gum, a lag time for ${\beta}$-mannanase production was appeared because high concentration of locust bean gum caused high viscosity which made the mixing of medium poor. As the locust bean gum concentration in the medium increased, ${\beta}$-mannanase activity and cell growth increased proportionally. Effect of various nitrogen sources on ${\beta}$-mannanase production was also studied. (NH4)2SO4 and malt extract were the most effective for ${\beta}$-mannanase production among the inorganic nitrogenous compounds and organic nitrogen nutrients. Inorganic compounds such as KH2SO4, NaCl, Na2CO3, and MgSO4, on ${\beta}$-mannanase production were optimized for ${\beta}$-mannanase production. Locust bean gum of 10 g/L, malt extract of 3 g/L, (NH4)2SO4 of 2 g/L, KH2SO4, of 10 g/L were selected as the optimal medium. Culture in a fermentor by using the optimal medium was carried out. Lag time of ${\beta}$-mannanase production was shorter due to the better mixing of the fermentor. The maximum ${\beta}$- mannanase activity of 9.7 unit/mL and specific ${\beta}$-mannanase activity of 1.9 unit/mg-cell could be obtained at 27 hours and the productivity of ${\beta}$-mannanase was 0.36 unit/mL$.$h.

  • PDF

Identification of Key Metabolites Involved in Quantitative Growth of Pinus koraiensis (잣나무의 생장특성과 관련있는 주요 대사물질 인자 구명)

  • Lee, Wi Young;Park, Eung-Jun;Han, Sang Urk
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.640-647
    • /
    • 2012
  • A metabolomic study was conducted to identify key metabolic components, which are correlated with the growth of 4-year-old Pinus koraiensis seedlings harvested at actively height growing season (May 18th). Among 105 individual metabolites identified by GC/MS analysis, alanine, threonine, oleic acid, and butanoic acids were negatively correlated with both height and weight of 4-year-old seedlings, while malic acid, xylose, glucose, d-turanose and inositol had positive correlation with various growth parameters. During the actively growing season, the concentrations of both amino acids and organic acids in the main stem of Superior seedling group were lower but the photosynthates such as mono-saccharide and sucrose were higher than in other seedling groups such as Intermediate and Inferior. Interestingly, d-turanose, an analogue of sucrose that is not metabolized in higher plants but used as carbon source by many organisms including numerous species of bacteria and fungi, showed the highest correlation (r=0.896, p<0.001) with height of 4-year-old seedlings, indicating that possible interaction with mycorrhizal organisms. Therefore we suggest that several metabolites selected in this study may be used as metabolic markers for complex traits in P. koraiensis.

Purification and Characterization of Degradative Enzyme of Dental Plaque from Streptomyces sp. Y9343 (Streptomyces sp. Y9343이 生産하는 齒面細菌膜 分解酵素의 精製와 特性)

  • Kim, Seong-Joo;Han, Hong-Keun;Yoon, Jeong-Weon
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 1996
  • Streptococcus mutans has been implicated as primary causative agents of dental caries by insoluble glucan (IG) in human and experimental animals. An attempt was made to search for the ${\alpha}$-1,3 glucanase that degrades IG produced by S. mutans. ${\alpha}$-1,3 glucanase was detected in the culture supernatant of microorganisms, which are isolated from soils on agar medium containing IG as a sole carbon source. This Streptomyces sp. hydrolysed IG produced by immobilized S. mutans and was named as Y9373. This enzyme required ${\alpha}$-1,3 glucan (IG) as an inducer. The optimum conditions for enzyme production were studied. The enzyme was purified by 30~70% $(NH_4)_2SO_4$ precipitation, anion exchange chroma tography on DEAE-cellulose and gel filtration on Sepadex G-75. The purified enzyme has a specific activity of 7840.0 U/mg protein giving 32.1-fold purification and final yield of 0.53%. The molecular weight was estimated to be about 22.5 kDa by SDS-PAGE. The optimum pH and temperature for enzyme reaction were 6.5 and 37$^{\circ}C$, respectively and the enzyme was relatively stable at the temperature below 60$^{\circ}C$. The activity of purified enzyme was enhanced by adding $Co^{2+},\;Mn^{2+}\;and\;Mg^{2+}$ into the medium, whereas inhibited by adding $Hg^{2+},\;Zn^{2+}$ and SDS. The $K_m\;and\;V_{max}$ value of ${\alpha}$-1,3 glucanase for IG were estimated to be 2.50 mM and 0.0431 mM/min, respectively. The thin layer chromatographic analysis of hydrolysates from IG with ${\alpha}$-1,3 glucanase showed that glucose was the main product of reaction. This enzyme activity was about 14 times higher than marketing dextranase as preventive agent against artificial dental caries by S. mutans in TH medium including 5% sucrose after 30 minutes.

  • PDF

Ultrafine Particle Events in the Ambient Atmosphere in Korea

  • Maskey, Shila;Kim, Jae-Seok;Cho, Hee-Joo;Park, Kihong
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.288-303
    • /
    • 2012
  • In this study, real time measurements of particle number size distribution in urban Gwangju, coastal Taean, and industrial Yeosu in Korea were conducted in 2008 to understand the occurrence of ultrafine particle (UFP) (<100 nm) events, the variation of its concentration among different sampling sites, and UFP formation pathways. Also, to investigate seasonal and long-term variation of the UFP number concentration, data were collected for the period of 5 years (2007, 2008, 2010, 2011, and 2012) in urban Gwangju. Photochemical and combustion events were found to be responsible for the formation of UFP in the urban Gwangju site, whereas only photochemical event led to the formation of UFP in the coastal Taean site. The highest UFP concentration was found in industrial Yeosu (the average UFP number fractions were 79, 59 and 58% in Yeosu, Gwangju, and Taean, respectively), suggesting that high amount of gas pollutants (e.g., $NO_2$, $SO_2$, and volatile organic carbon (VOC)) emitted from industries and their photochemical reaction contributed for the elevated UFP concentration in the industrial Yeosu site. The UFP fraction also showed a seasonal variation with the peak value in spring (61.5, 54.5, 50.5, and 40.7% in spring, fall, summer, and winter, respectively) at urban Gwangju. Annual average UFP number concentrations in urban Gwangju were $5.53{\times}10^3\;cm^{-3}$, $4.68{\times}10^3\;cm^{-3}$, $5.32{\times}10^3\;cm^{-3}$, $3.99{\times}10^3\;cm^{-3}$, and $2.16{\times}10^3\;cm^{-3}$ in the year 2007, 2008, 2010, 2011, and 2012, respectively. Comparison of the annual average UFP number concentration with urban sites in other countries showed that the UFP concentrations of the Korean sites were lower than those in other urban cities, probably due to lower source strength in the current site. TEM/EDS analysis for the size-selected UFPs showed that the UFPs were classified into various types having different chemical species. Carbonaceous particles were observed in both combustion (soot and organics) and photochemical events (sulfate and organics). In the photochemical event, an internal mixture of organic species and ammonium sulfate/bisulfate was identified. Also, internal mixtures of aged Na-rich and organic species, aged Ca-rich particles, and doughnut shaped K-containing particles with elemental composition of a strong C with minor O, S, and K-likely to be originated from biomass burning nearby agricultural area, were observed. In addition, fly ash particles were also observed in the combustion event, not in the photochemical event.