• Title/Summary/Keyword: Carbon Source

Search Result 2,755, Processing Time 0.04 seconds

The Removal of Organics and Nitrogen with Step Feed Ratio Change into the Anoxic and Anaerobic reactor in Advanced Sewage Treatment process Using Nonsurface-modified and Surface-modified Media Biofilm (비개질/개질 생물막을 이용한 오수고도처리공정에서 혐기조와 무산소조의 원수 분배율에 따른 유기물 및 질소 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2005
  • This study was accomplished using attached $A^2/O$ process that contains nonsurface-modified and surface-modified polyethylene media inside the Anaerobic/Anoxic, Oxic tank, respectively. We could make the hydrophobic polyethylene media have hydrophilic characteristics by radiating ion beam on the surface of the media. The objectives of this study is to investigate the removal efficiencies of the organics and nitrogen when the step feed ratio of raw wastewater into anaerobic and anoxic tank is changed. In this case, we assumed that the denitrification rate can be improved because the nitrifiers in anoxic tank can perform denitrification using RBDCOD instead of artificial carbon sources (for example, methanol, etc.). The wastewater injection rate into anaerobic/anoxic tank was set up by the ratio of 10 : 0, 9 : 1, 8 : 2, 6 : 4, and the results of BOD removal efficiency showed similar trends with $93.3\%,\;92.6\%,\;92.4\%\;and\;91.6\%$, respectively. But the BOD removal efficiency (utilization of the organics) in the anoxic tank was in the order of 9 : 1 $(84.8\%)$, 10 : 0 $(77.0\%)$, 8 : 2 $(75.3\%)$, and 6 : 4 $(61.1\%)$. The T-N removal efficiency was most high when the ratio is 9 : 1 $(67.4\%)$, and other conditions, 10 : 0, 8 : 2, 6 : 4, showed $61.3(\%),\;60.7\%,\;55.5\%$, respectively; the ratio 6 : 4 was found to be lowest T-N removal efficiency, lower than the ratio 9 : 1 by $12\%$. Though the nitrification rate of the ratio 10 : 0, 9 : 1, and 8 : 2 showed similar levels, the ratio 6 : 4 showed considerable inhibition of nitrification, ammonia was the great portion of the effluent T-N. The advantages of this process is that this process is cost-saving, and non-toxic methods than injecting the artificial carbon source.

Methane Fermentation of Facultative Pond in Pond System for Ecological Treatment and Recycling of Livestock Wastewater (축산폐수 처리 및 재활용을 위한 조건성연못의 메탄발효)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • A wastewater treatment pond system was developed for treatment and recycling of dairy cattle excreta of $5\;m^1$ per day. The wastes were diluted by the water used for clearing stalls. The system was composed of three ponds in series. A submerged gas collector for the recovery of methane was installed at the bottom of secondary pond with water depth of 2.4m. This paper deals mainly with performance of methane fermentation of secondary pond which is faclutative one. The average $BOD_5$, SS, TN, and TP concentrations of influent into secondary pond were 49.1, 53.4, 48.6, and 5.3 mg/l, and those of effluent from it were 27.9, 45.7, 30.8, 3.2 mg/l respectively. Methane fermentation of 2.4-meter-deep secondary pond bottom was well established at $16^{\circ}C$ and gas garnered from the collector at that temperature was 80% methane. Literature on methane fermentation of wastewater treatment ponds shows that methane bacteria grow well around $24^{\circ}C$, the rate of daily accumulation and decomposition of sludge is approximately equal at $19^{\circ}C$, and activities of methanogenic bacteria are ceased below $14^{\circ}C$. The good methane fermentation of the pond bottom around $16^{\circ}C$, about $3^{\circ}C$ lower than $19^{\circ}C$, results from temperature stability, anaerobic condition, and neutral pH of the bottom sludge layer. It is recommended that the depth of pond water could be 2.4m. Gas from the collector during active methane fermentation was almost 83% methane, less than 17% nitrogen. Carbon dioxide was less than 1% of the gas, which indicates that carbon dioxide produced in bottom sludges was dissolved in the overlaying water column. Thus a purified methane can be collected and used as energy source. Sludge accumulation on the pond bottom for a nine month period was 1.3cm and annual sludge depth can be estimated to be 1.7cm. Design of additional pond depth of 0.3m can lead to 15 - 20 year sludge removal.

  • PDF

Preparation of Antibiotic-Resistant Bradyrhizobium japonicum and Its Inoculation Effects on Soybean [Glycin max(L.) Merr] (항생물질(抗生物質) 표식(標識) 근류균(根瘤菌)의 조제(造製)와 그 접종효과)

  • Kim, Kwang-Sik;Kim, Kil-Yong;Son, Bo-Gyun;Lee, Young-Hwan;Kim, Yong-Woong;Seong, Ki-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.181-188
    • /
    • 1992
  • This study was carried out to evaluate the fate of inoculant Bradyrhizobium japonicum and the inoculation effect on soybean in complex soil environment. To moniter Rhizobium strains from the root, streptomycine and streptomycine and nalidixic acid resistant marker strains were prepared by spontaneous mutagenesis. The characteristics and properties of antibiotic marked strains were not altered by the mutagenesis. The comparison of properties of wild type and antibiotic resistant Bradyrhizobium strains are summarized as follow : 1) The strains of USDA110K-$STR^r$, USDA110N-$STR^r$ and R318-$STR^r$ showed weak tolerance to pH 9.0. The utilization of carbon sources by fast growing group was different from that of slow growing group. The marked strains of R214-$STR^rNAL^r$, USDA110K-$STR^r$ and USDA110N-$STR^r$ was doubtful in utilization of sorbitol and R138-$STR^rNAL^r$ was doubtful in utilization of xylose as a carbon source. 2) By examining the agglutination reaction of serogroups, the strains used were identified as different ones. There were no differences between wild type and marked strains in agglutination titer values. 3) The plasmid size of fast group was slightly greater than that of slow group. However, there was no differences in plasmid size between the wild type and antibiotic resistant strains. This result indicates that the antibiotic resistance was not encoded in plasmid. 4) The recovery of the inoculated strains was up to 12.5 % in soybean cultivated soil and was up to 25 % in soybean uncultivated soil. 5) When the wild type or marked strains were inoculated. there was no significant effect on soybean plant, whereas the inoculation effect was pronounced in soybean uncultivated soil. The inoculation effect seemed to be more pronounced in wild type strains than antibiotic resistant strains. however, the difference was not significant.

  • PDF

Comparision of Mineral, Hydroxy Methyl Furfural Content and SDS-PAGE Pattern of Proteins in Different Honeys (다양한 꿀에 함유된 무기물 조성, Hydroxy Methyl Furfural 함량 및 꿀 단백질의 전기영동 패턴 비교)

  • Jung, Mi-Ea;Kim, Cheon-Jei;Paik, Hyun-Dong;Oh, Jae-Wook;Lee, Si-Kyung
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.241-249
    • /
    • 2011
  • This study was conducted to analyze ash content, mineral composition, hydroxy methyl furfural (HMF) content, stable carbon isotope ratio, and SDS-polyacrylamide gel electrophoresis patterns to investigate the quality characteristics of various honeys harvested from different sources and to identify differences useful for distinguishing honey sources. Ash content was 0.046-0.012% in acacia honey, 0.565-1.318% in chestnut honey, 0.06-0.582% in polyfloral honey, and 0.237-0.893% in native bee honey. Potassium content was high in order of chestnut honey>native bee honey>polyfloral honey>acacia honey. The Na/K ratio was 0.92-1.97 in acacia honey, 0.02-1.59 in chestnut honey, 0.02-5.30 in polyfloral honey, and 0.22-0.51 in native bee honey. The HMF content was 9.60-12.85, 10.15-25.75, 9.7-33.5, and 6.25-21.5 mg/kg in acacia, chestnut, native bee, and polyfloral honeys, respectively. HMF content was the highest in native bee honey. A 59 kDa protein band was revealed in all samples by SDS-PAGE analysis. Protein bands of 32.1, 31.9, and 33.5 kDa were revealed in some chestnut honeys, and protein bands of 32.3 and 32.5 kDa were shown in native bee honeys. A protein band of 72 kDa was also confirmed in some chestnut honeys.

${\beta}-galactosidase$ Activity of Lactobacillus spp. from Pickles (젓갈에서 분리한 Lactobacillus spp.의 ${\beta}-galactosidase$ 특성)

  • Rhee, Young-Hwan;Oh, Min-Keun;Lee, Yong-Kyu;Shin, Seung-Yee;Kim, Jong-Hyun
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.437-442
    • /
    • 1996
  • Two strains of Lactobacillus(L.) casfi and one strain of L. Pentosus, which were isolated from pickles, were used to investigate in studing their characteristics of ${\beta}-galactosidase$. The preferable carbon sources and pH of the MRS media for enzyme production from L. casei No.10 was found to be 1.0% lactose and pH 7.5, from L. Pentosus No.63 was 1.0% galactose and pH 7.5, and from L. casei No.36 was 1.0% lactose and pH 6.5, respectively. The maximum enzyme production from each strain was found after 48 hours culture at $30^{\circ}C$ in a medium with preferable carbon source. The optimum reaction temperature with substrate for ${\beta}-galactosidase$ activity was found at $60^{\circ}C$ for all three strains . The stability of enzyme from L. casei No.36 was found to be at $45^{\circ}C$, from L. Pentosus No.63 was found at $55^{\circ}C$. This stability from L. casei No.36 was found at $40^{\circ}C$, but it was reduced to 60% at $55^{\circ}C$. These stabilities of enzymes remained about 90% at $40^{\circ}C$ for all three strains. The optimal pH for enzyme activities was found to be pH 6.5 for all three strains. Enzyme activity remained over 90% for L. casei No.10 at $pH\;5.0{\sim}6.0$, for L. casei No.36 at $pH\;5.0{\sim}8.0$, and for L. pentosus No.63 at $pH\;6.0{\sim}7.0$.

  • PDF

Optimization of Culture Conditions for D-Tagatose Production from D-Galactose by Enterobacter agglomerans. (Entrobacter agglomerans에 의한 D-Galactose로부터 D-Tagatose 생산조건의 최적화)

  • 오덕근;노회진;김상용;노봉수
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.250-256
    • /
    • 1998
  • D-Tagatose production from D-galactose was investigated using 35 type strains of American Culture Type Collection (ATCC) and Korean Collection for Type Cultures (KCTC) which have potential to produce D-tagatose. Enterobacter agglomerans ATCC 27987 was selected as a D-tagatose producing strain due to its short fermentation time and high production of D-tagatose. Optimization of the culture conditions for D-tagatose production by E. agglomerans ATCC 27987 was performed. Among various carbon sources, D-galactose was the most effective carbon source for D-tagatose production. As the D-galactose concentration was increased, cell growth and D-tagatose production increased. Effect of nitrogen sources on D-tagatose production was studied. Of inorganic nitrogen sources, ammonium sulfate was effective one for D-tagatose production and yeast extract was the most suitable organic nitrogen nutrient. The concentrations of inorganic compounds such as KH$_2$PO$_4$, K$_2$HPO$_4$, and MgSO$_4$$.$7H$_2$O were also optimized for D-tagatose production. The optimal medium was determined to contain D-galactose of 20 g/l, yeast extract of 5.0 g/l, (NH$_4$)$_2$SO$_4$ of 2.0 g/l, KH$_2$PO$_4$ of 5.0 g/l, K$_2$HPO of 5.0 g/l, and MgSO$_4$$.$7H$_2$O of 5 mg/l. The optimal environmental conditions in a 250-$m\ell$ flask were found to be pH of 6.0, temperature of 30$^{\circ}C$, and agitation speed of 150 rpm. D-tagatose of 0.41 g/l could be obtained in 24 h from 20 g/l D-galactose at the optimal culture condition without induction and cell concentration.

  • PDF

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Geomicrobiological Behavior of Heavy Metals in Paddy Soil Near Abandoned Au-Ag Mine Supplied with Carbon Sources (탄소원을 공급한 폐금은광산 주변 논토양 내 중금속의 지구미생물학적 거동 연구)

  • Ko, M.S.;Lee, J.U.;Park, H.S.;Shin, J.S.;Bang, K.M.;Chon, H.T.;Lee, J.S.;Kim, J.Y.
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.413-426
    • /
    • 2009
  • The study was conducted to investigate the effects of indigenous bacteria on geochemical behavior of toxic heavy metals in contaminated paddy soil near an abandoned mine. The effects of sulfate amendment to stimulate microbial sulfate reduction on heavy metal behaviors were also investigated. Batch-type experiments were performed with lactate or glucose as a carbon source to activate indigenous bacteria in the soil under anaerobic condition for 100 days. Sulfate (250 mg/L) was artificially injected at 60 days after the onset of the experiments. In the case of glucose supply, solution pH increased from 4.8 to 7.6 while pH was maintained at 7~8 in the lactate solution. The initial low pH in the case of glucose supply likely resulted in the enhanced extraction of Fe and most heavy metals at the initial experimental period. Lactate supply exerted no significant difference on the amounts of dissolved Zn, Pb, Ni and Cu between microbial and abiotic control slurries; however, lower Zn, Pb and Ni and higher Cu concentrations were observed in the microbial slurries than in the controls when glucose supplied. Sulfate amendment led to dramatic decrease in dissolved Cr and maintenance of dissolved As, both of which had gradually increased over time till the sulfate injection. Black precipitates formed in solution after sulfate amendment, and violarite($Fe^{+2}{Ni^{+3}}_2S_4$) was found with XRD analysis in the microbial precipitates. Conceivably the mineral might be formed after Fe(III) reduction and microbial sulfate reduction with coprecipitation of heavy metal. The results suggested that heavy metals which can be readily extracted from contaminated paddy soils may be stabilized in soil formation by microbial sulfate reduction.

Isolation and Morphological Identification of Fresh Water Green Algae from Organic Farming Habitats in Korea (유기농업 생태계로부터 담수 녹조류 분리 및 형태적 동정)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Yun, Jong-Chul;Kim, Suk-Chul
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.743-760
    • /
    • 2014
  • This study aimed to isolate and identify freshwater algae from the organic agricultural ecosystems and investigate its biological characteristics to study the possibility of utilizing a biomass freshwater algae in organic farming. In the survey area, average water temperature was $12.4{\sim}28.2^{\circ}C$ and the pH ranges were from 6.1 to 8.5. The solid culture method is more suitable than liquid culture method for isolation of freshwater algae with lower contamination level and higher isolation frequency. A total of 115 strains were isolated from six freshwater algae habitats in nine regions in Korea. BGMM (BG11 Modified Medium) amended with NaNO3 and $KNO_3$ as a nitrogen, and $Na_2CO_3$ as carbon source was designed to isolate and culture freshwater algae. Absorbance of freshwater algae culture has increased dramatically to four days and decreased after eight days after inoculation. CHK008 of the seven isolates showed the highest absorbance in seven days after culturing in BGMM. The optimal pH of BGMM for culturing freshwater algae was pH 6-7. As light intensity increased, growth of freshwater algae increased. Among the five kinds of carbon sources, glucose and galactose promoted good growth of freshwater algae in BGMM. The colony color of purified 16 green algae isolates showed a separation of green, dark and light green, and of them, eleven algae strains showed a strong fluorescent light under fluorescence microscopy. Cell size of the green algae showed a wide range of variation depending on the species. General morphology of the green algae strains was spherical. Chlamydomonas sp. was elliptical, and Chlorella sorokiniana was ellipsoidal and cylindrical. All strains of the green algae except for Chlamydomonas sp. did not have flagella. One isolate of Chlamydomonas sp. and five isolates of C. sorokiniana secreted mucus. Sixteen isolates of 16 green algae were identified as two family and six species, Chlorella vulgalis, C. sorokiniana, C. pyrenoidosa, C. kessleri, C. emersonii, and Chlamydomonas sp. based on their morphological characteristics.

Optimization of DME Reforming using Steam Plasma (수증기 플라즈마를 이용한 DME 개질의 최적화 방안 연구)

  • Jung, Kyeongsoo;Chae, U-Ri;Chae, Ho Keun;Chung, Myeong-Sug;Lee, Joo-Yeoun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In today's global energy market, the importance of green energy is emerging. Hydrogen energy is the future clean energy source and one of the pollution-free energy sources. In particular, the fuel cell method using hydrogen enhances the flexibility of renewable energy and enables energy storage and conversion for a long time. Therefore, it is considered to be a solution that can solve environmental problems caused by the use of fossil resources and energy problems caused by exhaustion of resources simultaneously. The purpose of this study is to efficiently produce hydrogen using plasma, and to study the optimization of DME reforming by checking the reforming reaction and yield according to temperature. The research method uses a 2.45 GHz electromagnetic plasma torch to produce hydrogen by reforming DME(Di Methyl Ether), a clean fuel. Gasification analysis was performed under low temperature conditions ($T3=1100^{\circ}C$), low temperature peroxygen conditions ($T3=1100^{\circ}C$), and high temperature conditions ($T3=1376^{\circ}C$). The low temperature gasification analysis showed that methane is generated due to unstable reforming reaction near $1100^{\circ}C$. The low temperature peroxygen gasification analysis showed less hydrogen but more carbon dioxide than the low temperature gasification analysis. Gasification analysis at high temperature indicated that methane was generated from about $1150^{\circ}C$, but it was not generated above $1200^{\circ}C$. In conclusion, the higher the temperature during the reforming reaction, the higher the proportion of hydrogen, but the higher the proportion of CO. However, it was confirmed that the problem of heat loss and reforming occurred due to the structural problem of the gasifier. In future developments, there is a need to reduce incomplete combustion by improving gasifiers to obtain high yields of hydrogen and to reduce the generation of gases such as carbon monoxide and methane. The optimization plan to produce hydrogen by steam plasma reforming of DME proposed in this study is expected to make a meaningful contribution to producing eco-friendly and renewable energy in the future.