• Title/Summary/Keyword: Carbon Respiration

Search Result 232, Processing Time 0.028 seconds

Comparison of Carbon Storages, Annual Carbon Uptake and Soil Respiration to Planting Types in Urban Park - The Case Study of Dujeong Park in Cheonan City - (도시공원 식재유형별 탄소저장량, 연간 탄소흡수량 및 토양호흡량 비교 - 천안시 두정공원을 중심으로 -)

  • Han, Mi-Kyoung;Kim, Kyeong-Jin;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • This study has compared carbon storages, annual carbon uptakes and annual soil respiration by planting type in Dujeong park, Cheonan city. Four plantations were selected in Dujeong park: Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation. We investigated each plantations from February 2012 to March 2013. Carbon storage and annual carbon uptake in each plantations were calculated with allometric method (Lee, 2003), and soil respiration was measured by using LI-6400 (LI-COR). Carbon storages in Pinus densiflora plantation, Quercus acutissima community, Quercus acutissima-Robinia pseudoacacia plantation, and Robinia pseudoacacia plantation were $17.36tonCha^{-1}$, $88.63tonCha^{-1}$, $115.38tonCha^{-1}$ and 4$9.88tonCha^{-1}$, and annual carbon uptakes were $1.04tonCha^{-1}yr^{-1}$, $2.12tonCha^{-1}yr^{-1}$, $6.47tonCha^{-1}yr^{-1}$ and $3.67tonCha^{-1}yr^{-1}$, respectively. Average annual carbon uptakes per tree of Pinus densiflora plantation, Quercus acutissima community and Robinia pseudoacacia plantation were $1.81kgC{\cdot}treeyr^{-1}$, $17.86kgC{\cdot}treeyr^{-1}$ and $9.14kgC{\cdot}treeyr^{-1}$ and Quercus acutissima was the greatest. The amounts of carbon released from soil respiration in the same four plantations were $2.20{\mu}molCO_2m^{-2}s^{-1}$, $1.90{\mu}molCO_2m^{-2}s^{-1}$, $2.47{\mu}molCO_2m^{-2}s^{-1}$ and $2.51{\mu}molCO_2m^{-2}s^{-1}$, and annual soil respiration were estimated $6.66tonCha^{-1}yr^{-1}$, $5.33tonCha^{-1}yr^{-1}$, $7.20tonCha^{-1}yr^{-1}$ and $7.25tonCha^{-1}yr^{-1}$, respectively. In this study area, Quercus acutissima-Robinia pseudoacacia plantation has a significant contribution to the role of carbon sink. However, the contribution of Pinus densiflora plantation was evaluated less. The results of this study can be used as the necessary data for tree planting and management in urban park.

A Study on Annual Carbon Emission Characteristic Changes Affected by Rainfall (강우에 의한 토양호흡 배출 특성이 연간 토양호흡 배출량에 미치는 영향 연구)

  • Kong, Hak Yang;Park, Sung Ae;Shim, Kyu Young;Kim, Tae Kyu;Lee, Jae Seok;Suh, Sang Uk
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.397-405
    • /
    • 2016
  • For better understand of the soil respiration characteristic in ecosystem, it is necessary to accurately determine the daily, monthly and seasonal $CO_2$ flux related to various environmental factors. In general, soil respiration is being measured on a sunny day. But soil respiration is known to be affected by soil temperature and soil moisture content. In case of forestry, changes in soil moisture content are entirely dependent on rainfall. If we calculated the monthly soil respiration measured based on sunny days data only, it could be a factor that loses credibility soil respiration. On this study, we measured soil respiration on Pinus koraiensis plantation at Mt. Taehwa of Gwangju, Gyeonggi-do on sunny and rainy days in 2012, using Automatic Open-Closed Chamber system (AOCC) and portable $CO_2$ analyzer (GMP343). Then we computed the regression equations using sunny days data, precipitation less than 10 mm data, and precipitation over 10 mm data. At first, there were no significant differences in observed data and computed data. But less than 10 mm precipitation, computed data was 26.5% lower than observed data. Precipitation over 10 mm, on the other hand, the former was 29.3% higher than the latter. In each case, it showed significant differences between observed and computed data (p<0.05). So if we computed regression equation using soil respiration measured sunny days only, about 30% of annual soil respiration could be overestimated. Through further study, we suggest the subdivision and computation of regression equation on the basis of the rainfall intensity.

Spatio-Temporal Variation of Soil Respiration and Its Association with Environmental Factors in Bluepine Forest of Western Bhutan

  • Cheten Thinley;Baghat Suberi;Rekha Chhetri
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.13-19
    • /
    • 2023
  • We investigated Soil respiration in Bluepine forest of western Bhutan, in relation to soil temperature, moisture content and soil pH and it was aimed at establishing variability in space and time. The Bluepine forest thrives in the typical shallow dry valleys in the inter-montane Bhutan Himalaya, which is formed by ascending wind from the valley bottom, which carries moisture from the river away to the mountain ridges. Stratified random sampling was applied and the study site was classified into top, mid, low slope and further randomized sample of n=20 from 30 m×30 m from each altitude. The overall soil respiration mean for the forest was found 2248.17 CO2 g yr-1 and it is ~613.58 C g yr-1. The RS from three sites showed a marginal variation amongst sites, lower slope (2,309 m) was 4.64 μ mol m-2 s-1, mid slope (2,631 m) was 6.78 μ mol m-2 s-1 and top slope (3,027 m) was 6.33 μ mol m-2 s-1 and mean of 5.92 μ mol m-2 s-1, SE=0.25 for the forest. Temporal distribution and variations were observed more pronounced than in the space variation. Soil respiration was found highest during March and lowest in September. Soil temperature had almost inverse trend against soil respiration and dropped a low in February and peak in July. The moisture in the soil changed across months with precipitation and pH remained almost consistent across the period. The soil respiration and soil temperature had significant relationship R2=-0.61, p=0.027 and other variables were found insignificant. Similar relationship are reported for dry season in a tropical forest soil respiration. Soil temperature was found to have most pronounced effect on the soil respiration of the forest under study.

A Study on the Textile Sensor Applied to Smart Wear for Monitoring Meditation Breathing (명상호흡 모니터링용 스마트의류를 위한 호흡수 측정 직물센서 연구)

  • Hwang, Su Jung;Jung, Yoon Won;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • The purpose of this study is for fundamental research of meditation smart wear for physical and mental healing, and researching method for monitoring phase of meditation through textile by measuring the number of abdominal respiration when meditating. For this purpose, the research implemented Single Wall Carbon Nano-Tube (SWCNT) based strain gauges type textile sensor, considered reliability and validity of respiratory sensing, and analyzed efficiency of respiratory sensing based on body parts comparatively. The first preliminary experiment was to evaluate the performance of textile sensor through abdominal model dummy which open and shut of 5 cm repeatedly for 2 minutes at the rate of 0.1Hz in order to simulate abdominal respiration. It concluded signal efficiency between reference sensor(BIOPAC) and textile respiratory sensor appears statistically significant (p<0.001). The second experiment were conducted with 4 subjects doing abdominal respiration under same conditions, and after comparing the signal values between two sensors from 4 attached locations(around center and sides of omphali and phren), center of omphali and sides of phren were selected as suitable location for measuring meditational breathing as they showed large and stable signals. In result, this research aimed for implementing of the textile sensor for sensing meditational breathing of long respiration cycle, review of reliability and validity for sensing number of meditational respiration with the sensor and consideration of sensing efficiency by sensing location on body parts.

Discussion of Soil Respiration for Understanding Ecosystem Carbon Cycle in Korea (생태계 탄소순환 이해를 위한 국내 토양호흡 연구의 고찰)

  • Lee, Jae-Ho;Yi, Jun-Seok;Chun, Young-Moon;Chae, Nam-Yi;Lee, Jae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.310-318
    • /
    • 2013
  • In territorial ecosystem, soil has stored considerable amount of carbon, and it is vulnerable to weakness release much of the carbon to atmosphere. In this study, we have been effort realization and discussion to the error between inter-instruments and measurement methods, time and special variations, gap filling and separation from each source included in soil respiration, used to collect soil respiration data in various ecosystems in Korea. In conclusion, it have to collect calibration data throughout comparison test between methods and instruments because accumulated data from past and accumulating data in present did not calibrated. In predicting change of soil carbon dynamic using the model method, it needs important data such as longterm and short-term data, artificial handling data of major factor, data from various ecosystem, soil texture, soil depth etc. In company with, we should collect highly qualified data through deep consideration of present problems.

Effects of Nitrogen Addition on Soil Respiration (상수리나무림 임상에 공급한 무기질소가 토양호흡에 미치는 영향)

  • 최주섭;문형태
    • The Korean Journal of Ecology
    • /
    • v.27 no.3
    • /
    • pp.155-159
    • /
    • 2004
  • In order to gain a better understanding of how forests participate in the cycling of carbon, effects of nitrogen addition on soil respiration were investigated on the oak forest in Kongju, Korea. Study site was divided into control, treatment f and treatment 2 plots, with 5 replication in each plot. In each replicate of treatment 1 and treatment 2 were fertilized with ammonium nitrate (NH$_4$NO$_3$), 30 g/$m^2$ and 60 g/$m^2$, respectively. Soil respiration, soil temperature, ammonium-N and nitrate-N were measured during the experimental period. Ammonium-N and nitrate-N in Ta were higher than those in control and T$_1$. Ammonium-N and nitrate-N in top-soil and sub-soil decreased sharply in August after bi9 rainfall in July in T$_1$ and T$_2$, however, those in control plot increased. Soil respiration in T$_2$ Plot showed consistently higher than those in control and T$_1$ until the end of July. However, soil respiration was similar among the control, T$_1$ and T$_2$ in mid-August and September The amount of Co$_2$ released from soil respiration in control, T$_1$ and T$_2$ in mid-August was 8.0$\pm$0.4, 9.3$\pm$0.6 and 10.2$\pm$0.5 $\mu$mol$^{-1}$ ㆍm$^{-2}$ ㆍs$^{-1}$ , respectively. However, those in control, T$_1$ and T$_2$in mid-August was 13.0$\pm$0.4, 13.5$\pm$0.5, 13.3$\pm$0.6 $\mu$mol$^{-1}$ ㆍm$^{-2}$$^{-1}$ , respectively. The results suggest that nitrogen addition in this oak forest has a positive effect on soil respiration.

Soil Respiration in Pinus rigida and Larix leptolepis Plantations (리기다소나무와 낙엽송(落葉松) 인공조림지내(人工造林地內) 토양발생(土壤發生) 이산화탄소(二酸化炭素)에 관한 연구(硏究))

  • Son, Yowhan;Kim, Hyun-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.496-505
    • /
    • 1996
  • Soil respiration was measured every two weeks from May through November 1995 using the soda lime method in 40-Year-old Pinus rigida and Larix leptolepis plantations on a similar soil in Yangpyeong, Kyonggi Province. Treatments included control and no-roots(plots trenched and root regrowth into plots prevented). Root respiration was evaluated by comparing no-roots sub-plots to control plots. Mean soil respiration showed highly significant species effects(p<0.01) and was highest at the Pinus rigida control plot($0.38g/m^2/hr$) and lowest at the Larix leptolepis no-roots plot($0.31g/m^2/hr$). High soil respiration in Pinus rigida may be related to aboveground litter production. The annual $CO_2$ fluxes ranged from 23 to 27t/ha/yr. We found significant correlations between temperatures(air : $R^2$=0.53, soil : $R^2$=0.55) and soil respiration(p<0.01), but no significant correlations between soil moisture and soil respiration(p>0.1). Root respiration was 3% of total soil respiration. We might underestimate rapt respiration because of shallow trenches and $CO_2$measurements right after trenching. Factors controlling soil respiration including belowground litterfall(especially fine roots) inputs, litter quality should be well understood to predict soil carbon fluxes and relative contributions to total soil respiration in forest ecosystems.

  • PDF

Carbon Budget in Campus of the National Institute of Ecology (국립생태원 캠퍼스 내 주요 식생의 탄소수지)

  • Kim, Gyung Soon;Lim, Yun Kyung;An, Ji Hong;Lee, Jae Seok;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • This study was conducted to quantify a carbon budget of major vegetation types established in the campus of the National Institute of Ecology (NIE). Carbon budget was measured for Pinus thunbergii and Castanea crenata stands as the existing vegetation. Net Primary Productivity (NPP) was determined by applying allometric method and soil respiration was measured by EGM-4. Heterotrophic respiration was calculated as 55% of total respiration based on the existing results. Net Ecosystem Production (NEP) was determined by the difference between NPP and heterotrophic respiration (HR). NPPs of P. thunbergii and C. crenata stands were shown in $4.9ton\;C\;ha^{-1}yr^{-1}$ and $5.3ton\;C\;ha^{-1}yr^{-1}$, respectively. Heterotrophic respirations of P. thunbergii and C. crenata stands were shown in $2.4ton\;C\;ha^{-1}yr^{-1}$ and $3.5ton\;C\;ha^{-1}yr^{-1}$, respectively. NEPs of P. thunbergii and C. crenata stands were shown in $2.5ton\;C\;ha^{-1}yr^{-1}$ and $1.8ton\;C\;ha^{-1}yr^{-1}$, respectively. Carbon absorption capacity for the whole set of vegetation types established in the NIE was estimated by applying NEP indices obtained from current study and extrapolating NEP indices from existing studies. The value was shown in $147.6ton\;C\;ha^{-1}yr^{-1}$ and it was calculated as $541.2ton\;CO_2ha^{-1}yr^{-1}$ converted into $CO_2$. This function corresponds to 62% of carbon emission from energy that NIE uses for operation of various facilities including the glass domes known in Ecorium. This carbon offset capacity corresponds to about five times of them of the whole national territory of Korea and the representative rural area, Seocheongun. Considered the fact that ongoing climate change was originated from imbalance of carbon budget at the global level, it is expected that evaluation on carbon budget in the spatial dimension reflected land use pattern could provide us baseline information being required to solve fundamentally climate change problem.

A Review on Soil Respiration Measurement and Its Application in Korea (토양호흡의 측정과 국내 연구 현황에 대한 고찰)

  • Lee, Eun-Hye;Lim, Jong-Hwan;Lee, Jae-Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.264-276
    • /
    • 2010
  • The objectives of this study were to introduce the methods of soil respiration measurement, to review soil respiration studies conducted in Korea, and to suggest potential issues generated from using various methods for soil respiration measurement. According to the measurement principles, the methods of soil respiration measurements are classified as: alkali absorption method (AA), closed chamber method (CC), closed dynamic chamber method (CDC), and open flow method (OF). Based on the litereaure review on soil respiration studies in Korea, the CDC method was mostly used by the researchers (62%), followed by the AA (17%), OF (13%) and CC (8%) methods. Along with these methods, various instruments were used such as LI-6400-09, EGM-3, EGM-4, and automatic soil respiration chamber. Most of the soil respiration measurements were carried out in forest ecosystems and the reported soil respiration showed a wide range of variations from 130 to 900 mg $CO_2\;m^{-2}h^{-1}$. Continuous monitoring of soil respiration with minimal disturbance and the potential inconsistency in measurements are still the challenges facing the researchers, causing a paucity in quality datasets of sufficient quantity. Few attempts of intercomparison among different methods hinder the data users from synthetic analysis and assessment of the collected datasets. In order to better estimate soil carbon budget and understand their exchange mechanisms in key ecosystems of Korea, it is necessary to measure soil respiration at various plant functional types, soils, and climate conditions over a decadal time scale along with the study on the partitioning of soil respiration into autotrophic and heteorotrophic components.

Effect of Gas Absorbents on Quality Attributes and Respiration Characteristics of Mature-Green Mume (Prunus mume Sieb. et Zucc) Fruits during Storage at Ambient Temperature (가스흡착제 처리가 상온 유통 청매실의 품질 및 호흡특성에 미치는 영향)

  • Cha, Hwan-Soo;Hong, Seok-In;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1036-1042
    • /
    • 2002
  • During storage at $25^{\circ}C$, the effect of gas absorbents, such as carbon dioxide scavenger, ethylene absorber, and their combinations, on respiration characteristics and quality attributes of mature-green Mume fruits packaged in $30\;{\mu}m$ low density polyethylene (LDPE) film was examined. Changes in quality attributes of the fruits were observed in terms of weight loss, titratable acidity, pH, fish firmness, color, water-soluble solid, and chlorophyll contents. In the presence of ethylene absorber $(KMnO_4)$, the physiological injury was remarkably suppressed, and there was no significant injury in Mume fruits at $25^{\circ}C$ for 10 days. Yellowing and softening were also noticeably reduced by the combination of plastic film packaging and inclusion of ethylene absorber. The respiration rate was slower in fruits sealed with ethylene absorber than in those with absorbent-free packaging. Using ethylene absorber, levels of oxygen and carbon dioxide were maintained at 2-3 and 7-8%, respectively, during storage at $25^{\circ}C$ for 10 days. The addition of carbon dioxide scavenger $(Ca(OH)_2)$, negatively affected the quality attributes and respiration characteristics of the fruits. Overall results showed that ethylene removal by gas absorbent in the film packages significantly prolonged the shelf life of the fruits at ambient temperature.