• Title/Summary/Keyword: Carbon Respiration

Search Result 232, Processing Time 0.035 seconds

Evaluation of Community Land Model version 3.5-Dynamic Global Vegetation Model over Deciduous Forest in Gwangneung, Korea (광릉 활엽수림에서 Community Land Model 3.5-Dynamic Global Vegetation Model의 평가)

  • Lim, Hee-Jeong;Lee, Young-Hee;Kwon, Hyo-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.95-106
    • /
    • 2010
  • The performance of Community Land Model version 3.5 - Dynamic Global Vegetation Model (CLM-DGVM) was evaluated through a comparison with the observation over temperate deciduous forest in Gwangneung, Korea. Influence of plant phenology, composition of plant functional type, and climate variability on carbon exchanges was also examined through sensitivity test. To get equilibrium carbon storage, the model was run for 400 years driven by the observed atmospheric data at the deciduous forest of the year 2006. We run the model for 2006 with the equilibrium carbon storage at Gwangneung forest and compared the model output with the observation. A comparison of leaf area index (LAI) between the model and observation indicated that the simulated phenology poorly represented the timing of budburst, leaf-fall, and evolution of LAI. Senescence of the phenology was delayed about four weeks and the simulated maximum LAI (of 5.8 $m^2$ $m^{-2}$) was greater than the observed value (of 4.5 $m^2$ $m^{-2}$). The overestimated LAI contributed to overestimation of both gross primary productivity (GPP) and ecosystem respiration $(R_e)$ through increased photosynthesis and foliar autotropic respiration $(R_a)$, respectively. Despite the discrepancy between the simulated and observed LAI, the simulated tree carbon storage amounts were comparable with the reported values at the site. Change in plant phenology from the simulated to the observed reduced more than six weeks of the plant growth period, resulting in the decreased amount of GPP and $R_e$. These values, however, were still higher (~10% of GPP and 40% of $R_e$) than the observed values. The effect of change in plant functional type composition (from dominant temperate deciduous forest to the coexistence of temperate deciduous and needle leaf forests) on the estimated amount of GPP and $R_e$ was marginal. The influence of climate variability on carbon storage amounts was not significant. The simulated inter-annual variation of GPP and $R_e$ from 1994 to 2003 depended on annual mean air temperature and total radiation but not on precipitation. Other deficiencies of CLM3.5-DGVM have been discussed.

Future Changes in Global Terrestrial Carbon Cycle under RCP Scenarios (RCP 시나리오에 따른 미래 전지구 육상탄소순환 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Hong, Jinkyu;Seong, Hyunmin;Heo, Tae-kyung;Seol, Kyung-Hee;Lee, Johan;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2014
  • Terrestrial ecosystem plays the important role as carbon sink in the global carbon cycle. Understanding of interactions of terrestrial carbon cycle with climate is important for better prediction of future climate change. In this paper, terrestrial carbon cycle is investigated by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (HadGEM2-CC) that considers vegetation dynamics and an interactive carbon cycle with climate. The simulation for future projection is based on the three (8.5/4.5/2.6) representative concentration pathways (RCPs) from 2006 to 2100 and compared with historical land carbon uptake from 1979 to 2005. Projected changes in ecological features such as production, respiration, net ecosystem exchange and climate condition show similar pattern in three RCPs, while the response amplitude in each RCPs are different. For all RCP scenarios, temperature and precipitation increase with rising of the atmospheric $CO_2$. Such climate conditions are favorable for vegetation growth and extension, causing future increase of terrestrial carbon uptakes in all RCPs. At the end of 21st century, the global average of gross and net primary productions and respiration increase in all RCPs and terrestrial ecosystem remains as carbon sink. This enhancement of land $CO_2$ uptake is attributed by the vegetated area expansion, increasing LAI, and early onset of growing season. After mid-21st century, temperature rising leads to excessive increase of soil respiration than net primary production and thus the terrestrial carbon uptake begins to fall since that time. Regionally the NEE average value of East-Asia ($90^{\circ}E-140^{\circ}E$, $20^{\circ}N{\sim}60^{\circ}N$) area is bigger than that of the same latitude band. In the end-$21^{st}$ the NEE mean values in East-Asia area are $-2.09PgC\;yr^{-1}$, $-1.12PgC\;yr^{-1}$, $-0.47PgC\;yr^{-1}$ and zonal mean NEEs of the same latitude region are $-1.12PgC\;yr^{-1}$, $-0.55PgC\;yr^{-1}$, $-0.17PgC\;yr^{-1}$ for RCP 8.5, 4.5, 2.6.

A Study on the Estimation of the Minimum Buoyancy for the Respiration of a Drowning Person (익수자의 호흡이 가능한 최소 부력 추정에 관한 연구)

  • Yim, Jeong-Bin;Park, Deuk-Jin;Kang, Yu Mi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.820-828
    • /
    • 2017
  • Tools and equipment that can provide buoyancy for a drowning person are important for saving lives. The purpose of this study was to estimate the minimum amount of gas needed and the buoyancy value in newton units required to generate the minimum buoyancy determined to be sufficient for keeping the head of a drowning person above the water's surface to allow for respiration for at least 1 minute. A buoyancy experiment was carried out with a long rubber balloon injected with carbon dioxide gas, and a buoyancy measurement experiment was performed on six college students. The degree of buoyancy was measured using a 5-point scale, and the statistical value of the measured data was analyzed to estimate minimum buoyancy. As a result, 8 grams of carbon dioxide were determined to satisfy minimum buoyancy conditions with a confidence level of 72%, and buoyancy was calculated to be 44.66 newtons. 12 grams of carbon dioxide met the minimum buoyancy conditions with a confidence level of 100%, and buoyancy was calculated to be 66.99 newtons. This study is expected to contribute to the development of low cost, easy-to-carry minimum buoyancy aids.

Mass Balance of Finfish Cage Farm in South Korea (어류가두리 양식장의 물질수지 산정)

  • Bo-Ram Sim;Hyung Chul Kim;Sang-Pil Yoon;SokJin Hong;Woosung Jung;Sungchan Kang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.473-483
    • /
    • 2023
  • This study was conducted to better understand the impact of marine fish farming by estimating mass balances of carbon and nitrogen. According to the results, 94.55% of carbon and 95.66% of nitrogen inputs were from the feed supplied in the farm. Of the total carbon emissions in the farm, 47.28% was due to fish respiration, which was subsequently released into seawater. Advection and diffusion in the farm contributed to 30.29% of the carbon released. In the case of nitrogen, 50.70% of the nitrogen released into the seawater was produced by fish excreta, and 31.37% was advected and diffused into the system. The sedimentary environment received 3.82% and 3.10% of the carbon and nitrogen released from the farm, respectively. The fish feed used for healthy growth contained 11.64% carbon and 9.17% nitrogen. Since the feed type was floating pellets, the load released into the sedimentary environment was relatively lower than that released into the marine environment. These findings suggest that the identification of an optimal fish feed that respects fish physiology and preserves a healthy ecology is critical for the future of aquaculture. Furthermore, ecosystem-based aquaculture systems that decrease environmental burden, while endeavoring to improve environmental health, are required.

Analysis of respiration gas of a fertile chicken egg during incubation by gas mass spectrometer (기체질량분석기를 이용한 유정란 부화과정의 호흡량 분석)

  • Kim, Hyunjoo;Min, Deullae;Kim, Dalho;Kim, Jin Seog
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.401-406
    • /
    • 2013
  • Oxygen($O_2$) consumption and carbon dioxide($CO_2$) excretion of a fertile chicken egg during incubation were measured by a gas mass spectrometer. A closed sample chamber was developed to collect gas samples during the 20 days of artificial incubation of both a fertile and an infertile egg. After leaving an egg in the sample chamber for an hour, using a gas-tight syringe, samples of 2 mL of gas were collected from the closed sample chamber and analyzed using a gas mass spectrometer in 2~4 day intervals. The $O_2$ consumption and $CO_2$ excretion of chicken embryos increased rapidly after 10 days from the starting point of incubation. After 20 days, 23 mL of $O_2$ was consumed and 16 mL of $CO_2$ was excreted per hour. Throughout the whole period of incubation, concentration of $O_2$ decreased 4.3 mol% and $CO_2$ increased only 3.1 mole%, i.e., the mole of consumed $O_2$ and the mole of excreted $CO_2$ were not the same. On the other hand, during the same period, concentration of $N_2$ increased about 1.3 mol% and the increased mole fraction of $N_2$ was comparable with the difference (1.2 mol%) between the mole fraction of consumed $O_2$ and excreted $CO_2$. Therefore, we can attribute the increase of $N_2$ mole% to the difference of mole fraction between consumed $O_2$ and excreted $CO_2$. In this study, through the analysis of gas, we could explain the respiration of a fertile chicken egg during incubation.

Standardization of KoFlux Eddy-Covariance Data Processing (KoFlux 에디 공분산 자료 처리의 표준화)

  • Hong, Jin-Kyu;Kwon, Hyo-Jung;Lim, Jong-Hwan;Byun, Young-Hwa;Lee, Jo-Han;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2009
  • The standardization of eddy-covariance data processing is essential for the analysis and synthesis of vast amount of data being accumulated through continuous observations in various flux measurement networks. End users eventually benefit from the open and transparent standardization protocol by clear understanding of final products such as evapotranspiration and gross primary productivity. In this paper, we briefly introduced KoFlux efforts to standardize data processing methodologies and then estimated uncertainties of surface fluxes due to different processing methods. Based on our scrutiny of the data observed at Gwangneung KoFlux site, net ecosystem exchange and ecosystem respiration were sensitive to the selection of different processing methods. Gross primary production, however, was consistent within errors due to cancellation of the differences in NEE and Re, emphasizing that independent observation of ecosystem respiration is required for accurate estimates of carbon exchange. Nocturnal soil evaporation was small and thus the annually integrated evapotranspiration was not sensitive to the selection of different data processing methods. The implementation of such standardized data processing protocol to AsiaFlux will enable the establishment of consistent database for validation of models of carbon cycle, dynamic vegetation, and land-atmosphere interaction at regional scale.

Effects of 1-MCP and Storage Condition on Shelf Life and Quality of 'Janghowon Hwangdo' Peach (Prunus persica Batsch) (1-MCP 및 수확 후 처리가 복숭아(Prunus persica Batsch) '장호원황도' 저장 유통 중 품질에 미치는 영향)

  • Chun, Jong-Pil;Seo, Jeong-Seok;Kim, Myung-Surn;Lim, Byung-Sun;Ahn, Young-Jik;Hwang, Yong-Soo
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.585-592
    • /
    • 2010
  • This study was conducted to investigate the effect of 1-MCP, an ethylene action inhibitor, and several postharvest treatments including ethylene scrubbing on fruit quality and respiration for keeping marketability in 'Janhowon Hwangdo' peach ($Prunus$ $persica$ Batsch). 1-MCP at the rate of $1.0{\mu}L{\cdot}L^{-1}$ showed best results in maintenance of fruit firmness and external appearance such as skin color. The ethylene production was strongly reduced by 1-MCP treatment at 0.5 or $1.0{\mu}L{\cdot}L^{-1}$ but respiration rate was only suppressed at $1.0{\mu}L{\cdot}L^{-1}$ during 6 days of shelf life at $20^{\circ}C$. Mature fruits (harvested 1 week before full commercial maturity) were much highly responsive to $1.0{\mu}L{\cdot}L^{-1}$ of 1-MCP compared to those of commercial maturity. At the concentration of $0.5{\mu}L{\cdot}L^{-1}$ of 1-MCP did not affect fruit marketability compared to untreated control. Beneficial effects of carbon ceramic as an ethylene scrubber were also found such as delay of firmness loss and deterioration of external appearance at $10^{\circ}C$, but these positive effects on fruit quality remained for only 5 days. The application of ethylene scrubber on the shipping carton boxes was effective on keeping firmness of immature fruit pretreated with 1-MCP when compared with mature fruit.

Comparison of automatic and manual chamber methods for measuring soil respiration in a temperate broad-leaved forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.272-277
    • /
    • 2018
  • Background: Studying the ecosystem carbon cycle requires analysis of interrelationships between soil respiration (Rs) and the environment to evaluate the balance. Various methods and instruments have been used to measure Rs. The closed chamber method, which is currently widely used to determine Rs, creates a closed space on the soil surface, measures $CO_2$ concentration in the inner space, and calculates Rs from the increase. Accordingly, the method is divided into automatic or manual chamber methods (ACM and MCM, respectively). However, errors of these methods and differences in instruments are unclear. Therefore, we evaluated the characteristics and difference of Rs values calculated using both methods with actual data. Results: Both methods determined seasonal variation patterns of Rs, reflecting overall changes in soil temperature (Ts). ACM clearly showed detailed changes in Rs, but MCM did not, because such small changes are unknown as Rs values are collected monthly. Additionally, Rs measured using MCM was higher than that using ACM and differed depending on measured plots, but showed similar tendencies with all measurement times and plots. Contrastingly, MCM Rs values in August for plot 4 were very high compared with ACM Rs values because of soil disturbances that easily occur during MCM measurements. Comparing Rs values calculated using monthly means with those calculated using MCM, the ACM calculated values for monthly averages were higher or lower than those of similar measurement times using the MCM. The difference between the ACM and MCM was attributed to greater or lesser differences. These Rs values estimated the carbon released into the atmosphere during measurement periods to be approximately 57% higher with MCM than with ACM, at 5.1 and $7.9C\;ton\;ha^{-1}$, respectively. Conclusion: ACM calculated average values based on various Rs values as high and low for measurement periods, but the MCM produced only specific values for measurement times as representative values. Therefore, MCM may exhibit large errors in selection differences during Rs measurements. Therefore, to reduce this error using MCM, the time and frequency of measurement should be set to obtain Rs under various environmental conditions. Contrastingly, the MCM measurement is obtained during $CO_2$ evaluation in the soil owing to soil disturbance caused by measuring equipment, so close attention should be paid to measurements. This is because the measurement process is disturbed by high $CO_2$ soil concentration, and even small soil disturbances could release high levels into the chamber, causing large Rs errors. Therefore, the MCM should be adequately mastered before using the device to measure Rs.

Distribution and absorption of Organic Carbon in Quercus mongolica and Pinus densiflora Forest at Mt. Gumgang in Seosan (서산지역 금강산 신갈나무림과 소나무림의 유기탄소 분포 및 흡수량)

  • Won, Ho-Yeon;Kim, Deok-Ki;Han, Areum;Lee, Young-Sang;Mun, Hyeong-Tae
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.243-252
    • /
    • 2016
  • Comparison of Organic carbon in the Quercus mongolica and Pinus densiflora forest at Mt. Gumgang were investigated. Carbon in above and below ground standing biomass, litter layer, and soil organic carbon were measured from September 2013 through August 2014. For the estimation of carbon cycling, soil respiration was measured. The amount of carbon allocated to above and below ground biomass in Q. mongolica and P. densiflora forest was 115.07/34.36, $28.77/8.59ton\;C\;ha^{-1}$, respectively. Amount of organic carbon in annual litterfall in Q. mongolica and P. densiflora forest was 4.89, $6.02ton\;C\;ha^{-1}$, respectively. Amount of organic carbon within 50cm soil depth was 132.78, $59.72ton\;C\;ha^{-1}$ $50cm-depth^{-1}$, respectively. Total amount of organic carbon in Q. mongolica and P. densiflora forest estimated to 281.52, $108.69ton\;C\;ha^{-1}$, respectively. Amount of organic carbon returned to the forest via litterfall in Q. mongolica and P. densiflora forest was 2.83, $2.20ton\;C\;ha^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Q. mongolica and P. densiflora forest was 3.90, $0.81ton\;C\;ha^{-1}yr^{-1}$ respectively. Absorption of organic carbon in Q. mongolica forest was remarkably higher than P. densiflora forest.

Suitability Judgment of Storage Conditions by Internal Gas Concentration of 'Fuji' Apples under CA Storage (CA저장 중 후지 사과의 내부 기체농도에 의한 저장조건의 적합성 판단)

  • Chung, Hun-Sik;Choi, Jong-Uck
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1295-1299
    • /
    • 1999
  • This study was conducted to develop a index for the judgment of suitability of storage conditions by internal gas concentration of 'Fuji' apples under CA storage, and was examined the relationship between the levels of quality characteristics(flesh firmness, titratable acidity and surface green color) and the infernal ethylene and carbon dioxide concentrations of apples. The levels of quality characteristics were not decreased for terms of storage when the infernal ethylene concentration of apples was below 10 ppm, but the levels of quality characteristics were sharply decreased when it was above 10 ppm of Internal ethylene. The high levels of quality characteristics were maintained by the lower internal carbon dioxide concentration of apples, especially at below 2% of internal carbon dioxide. These result showed that the suitable condition for CA storage of 'Fuji' apples was a condition for having below 10 ppm of internal ethylene and below 2% of internal carbon dioxide in apples. The internal ethylene and carbon dioxide concentrations of apples during CA storage can be used as a crucial index for the suitability judgment of storage conditions.

  • PDF