• Title/Summary/Keyword: Carbon Paste Electrode

Search Result 115, Processing Time 0.026 seconds

Determination of Ag(I) at a Chemically Modified Electrode Based on 2-Imino-cyclopentane-dithiocarboxylic Acid

  • Jeong-Sik Yeom;Mi-Sook Won;Sung-Nak Choi;Yoon-Bo Shim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.200-205
    • /
    • 1990
  • Chemically modified electrodes(CMEs), based on 2-imino-1-cyclopentane-dithiocarboxylic acid (icdc) containing carbon paste, have been characterized using cyclic voltammetric techniques. Ag(I) was chemically deposited on the CMEs, and voltammograms were obtained with the electrode in a separate buffer solution. The CME surface can be regenerated with exposure to acid and reused for deposition. In 10 deposition/measurement/regenerate cycles, the linear response have been reproduced up to $1{\times}10^{-6}$ M in linear sweep voltammetry and 1${\times}$10-8 M in differential pulse voltammetry with relative standard deviation of 5.2% and 12.4%, respectiveiy. The sensitivity increased with deposition time and scanning rate, and detection limit was $1{\times}10^{-7}M\;and\;1{\times}10^{-9}M$ at 20 minutes deposition in the linear sweep voltammetry and differential pulse voltammetry, respectively. The presence of some metal ions does not influence the silver ion response. Satisfactory results were obtained for the analysis of the silver ion for a variety of reference materials without interference of Hg ion at the condition of pH = 5-6.

Electrochemical properties of the mugwort-embedded biosensor for the determination of hydrogen peroxide (쑥을 이용한 과산화수소 정량 바이오센서의 전기화학적 성질)

  • Lee, Beom-Gyu;Park, Sung-Woo;Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • A mugwort-tissue-based modified carbon paste electrode was constructed for the amperometric detection of hydrogen peroxide and its electrochemical properties are described. Especially the amperometric signal was very stable and bigger than any other enzyme electrode studied in this lab. The effect of tissue composition on the response was linear within the wide range of experiment and the linearity of Lineweaver-Burk plot showed that the sensing process of the biosensor is by enzymatic catalysis. And pH dependent current profile connoted that two isozymes are active in this system.

Electrochemical Detection of Hydroxychloroquine Sulphate Drug using CuO/GO Nanocomposite Modified Carbon Paste Electrode and its Photocatalytic Degradation

  • G. S. Shaila;Dinesh Patil;Naeemakhtar Momin;J. Manjanna
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.15-31
    • /
    • 2024
  • The antimalarial drug hydroxychloroquine sulphate (HCQ) has taken much attention during the first COVID-19 pandemic phase for the treatment of severe acute respiratory infection (SARI) patients. Hence it is interest to study the electrochemical properties and photocatalytic degradation of the HCQ drug. Copper oxide (CuO) nanoparticles, graphene oxide (GO) and CuO/GO NC (nanocomposite) modified carbon paste electrodes (MCPE) are used for the detection of HCQ in an aqueous medium. Electrochemical behaviour of HCQ (20 μM) was observed using CuO/MCPE, GO/MCPE and CuO/GO NC/MCPE in 0.1 M phosphate buffer at pH 7 with a scan rate of 20 to 120 mV s-1 by cyclic voltammetry (CV). Differential pulse voltammetry (DPV) of HCQ was performed for 0.6 to 16 μM HCQ. The CuO/GO NC/MCPE showed a reasonably good sensitivity of 0.33 to 0.44 μA μM cm-2 with LOD of 69 to 92 nM for HCQ. Furthermore, the CuO/GO NC was used as a catalyst for the photodegradation of HCQ by monitoring its UV-Vis absorption spectra. About 98% was degraded in about 34 min under visible light and after 4 cycles it was 87%. The improved photocatalytic activity may be attributed to decrease in bandgap energy and enhanced ability for the electrons to migrate. Thus, CuO/GO NC showed good results for both sensing and degradation applications as well as reproducibility.

Use of Carbon Nanotube Electrode and Squarewave Anodic Stripping Voltammetry for the Detection of Lead Heavy Metal (납 중금속 검출을 위한 탄소나노튜브 전극 및 네모파 양극 벗김 전압전류법 이용)

  • Choi, Changkun;Seok, Jonghyuk;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.505-509
    • /
    • 2012
  • In this study, we investigate the use of new carbon nanotube paste electrode (CNPE) for promoting the detection of lead (Pb) heavy metal in the a drinkable water, which negatively affects human brain and nerve system. For the evaluations, CNPE is served as a working electrode, while sensitivity and limit of detection (LOD) of Pb are measured in DI and tap water based electrolytes using squarewave anodic stripping voltammetry (SWASV). As a result of that, in the 25~150 ppb range of $Pb^{2+}$ ions, its sensitivity and calculated LOD are $12.85\;{\mu}A/{\mu}M$ and 26 ppb in DI water based 0.1 M $H_{2}SO_{4}$ electrolyte while they are $10.36\;{\mu}A/{\mu}M$ and 38 ppb electrolytes respectively. In addition, experimentally measured LOD values of Pb are 4 ppb and 10 ppb in the two water electrolytes. The stripping of $Pb^{2+}$ ion is also controlled by surface reaction. Our experimental data are then compared with those of other already published references. With the comparison, it is proved that our electrode outperforms other electrodes in terms of the sensitivity and LOD of trace Pb metal.

Ni(OH)2 and NiO Nanostructures: Synthesis, Characterization and Electrochemical Performance

  • Saghatforoush, Lotf Ali;Hasanzadeh, Mohammad;Sanati, Soheila;Mehdizadeh, Robabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2613-2618
    • /
    • 2012
  • Hydrothermal route have been used in different conditions for preparation of $Ni(OH)_2$ nanostructures. The NiO nanoparticles were obtained by calcining the $Ni(OH)_2$ precursor at $450^{\circ}C$ for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of $Ni(OH)_2$ nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nanostructures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.

Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core

  • Ly, Suw-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1613-1617
    • /
    • 2006
  • Optimum analytical conditions for cyclic voltammetry (CV) and square wave (SW) stripping voltammetry were determined using mercury-mixed carbon nanotube paste electrode (PE). The results approached the microgram working ranges of SW: 10.0-80.0 $ugL^{-1}$ and CV: 100-700 $ugL^{-1}$ Cd (II); working conditions of 300-Hz frequency, 100 mV amplitude, 1.6 V accumulation potential, 400 sec accumulation time, and 40 mV increment potential. First, analysis was performed through direct assay of cadmium ions deep into the fishs brain core and plant tissue in real time with a preconcentration time of 400 sec. The relative standard deviation of 10.0 $mgL^{-1}$ Cd (II) observed was 0.064 (n = 12) at optimum conditions. The low detection limit (S/N) was set at 0.6 $ugL^{-1}$ ($5.33{\times}10^{-9}$ M). The methods can be used in direct analysis in vivo or in real-time monitoring of plant tissue.

Assay of Dinitrotoluene on a Contaminated Soil Sample with an Anodic Stripping Peak Current

  • Ly, Suw-Young;Lee, Chang-Hyun;Jung, Young-Sam
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.997-1002
    • /
    • 2006
  • This report presents a voltammetric assay of dinitrotoluene using a DNA immobilized onto a carbon nanotube paste electrode (PE). The cyclic voltammetry (CV) and square wave (SW) stripping voltammetry parameters of the optimized conditions were obtained. An anodic peak current appeared at 0.3 V (versus Ag/AgCl) in a 0.1-M $NH_4H_2PO_4$ electrolyte solution. The detection limit was found to be $0.6ngL^{-1}$(S/N = 10), within a deposition time of 100 sec.

Carbon nanotube / silane hybride film for highly efficient field emitter

  • Jeong, Hae-Deuk;Kim, Ho-Young;Jeong, Hee-Jin;Han, Joong-Tark;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.181-181
    • /
    • 2010
  • Few-walled carbon nanotubes (FWNTs)-based field emitters with long term stability are fabricated by using a spray method. Tetraethylorthosilicate (TEOS) sol as a binder was mixed with dispersed solution of FWNTs to enhance the adhesion of FWNTs on the cathode substrate. Due to the strong intermolecular interaction of TEOS to the functional groups attached on CNTs and substrate, CNTs are tightly adhered to the cathode electrode when heat treatment is performed at $150^{\circ}C$ for 1 hour, resulting in a stable electron emission of CNT emitters for long time. Excellent field emission characteristics were exhibited, with a large field enhancement factor and low turn-on voltage, comparable to those of CNT emitters fabricated by a screen printing of CNT paste. Therefore, FWNTs / TEOS hybrid films could be utilized as an alternative for the efficient and reliable field emitters.

  • PDF

Electroanalytical Measurement of TEDA (Triethylenediamine) in the Masks of War

  • Ariani, Zahra;Honarmand, Ebrahim;Mostaanzadeh, Hossein;Motaghedifard, Mohammadhassan;Behpour, Mohsen
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • In this paper, for the first time, the electroanalytical study of Triethylenediamine, TEDA was done on a typically graphene modified carbon paste electrode (Gr/CPE) in pH=10.5 of phosphate buffer solutions (PBS). The surface morphology of the bare and modified electrodes was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electro-oxidation of TEDA was investigated at the surface of modified electrode. The results revealed that the oxidation peak current of TEDA at the surface of Gr/CPE is 2.70 times than that shown at bare-CPE. A linear calibration plot was observed in the range of 1.0 to 202.0 ppm. In this way, the detection limit was found to be 0.18 ppm. The method was then successfully applied to determination of TEDA in aqueous samples obtained from two kinds of activated carbon from the masks of war. On the other hand, density functional theory (DFT) method at B3LYP/6-311++G** level of theory and a conductor-like Polarizable Continuum Model (CPCM) was used to calculate the $pK_a$ values of TEDA. The energies of lowest unoccupied molecular orbital ($E_{LUMO}$) and highest occupied molecular orbital ($E_{HOMO}$), gap energy (${\Delta}E$) and some thermodynamic parameters such as Gibbs free energy of TEDA and its conjugate acid ($HT^+$) were calculated. The results of calculated $pK_a$ were found to be in good agreement with the experimental values.

Determination of Ascorbic Acid, Acetaminophen, and Caffeine in Urine, Blood Serum by Electrochemical Sensor Based on ZnO-Zn2SnO4-SnO2 Nanocomposite and Graphene

  • Nikpanje, Elham;Bahmaei, Manochehr;Sharif, Amirabdolah Mehrdad
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.173-187
    • /
    • 2021
  • In the present research, a simple electrochemical sensor based on a carbon paste electrode (CPE) modified with ZnO-Zn2SnO4-SnO2 and graphene (ZnO-Zn2SnO4-SnO2/Gr/CPE) was developed for the direct, simultaneous and individual electrochemical measurement of Acetaminophen (AC), Caffeine (Caf) and Ascorbic acid (AA). The synthesized nano-materials were investigated using scanning electron microscopy, X-ray Diffraction, Fourier-transform infrared spectroscopy, and electrochemical impedance spectroscopy techniques. Cyclic voltammetry and differential pulse voltammetry were applied for electrochemical investigation ZnO-Zn2SnO4-SnO2/Gr/CPE, and the impact of scan rate and the concentration of H+ on the electrode's responses were investigated. The voltammograms showed a linear relationship between the response of the electrode for individual oxidation of AA, AC and, Caf in the range of 0.021-120, 0.018-85.3, and 0.02-97.51 μM with the detection limit of 8.94, 6.66 and 7.09 nM (S/N = 3), respectively. Also, the amperometric technique was applied for the measuring of the target molecules in the range of 0.013-16, 0.008-12 and, 0.01-14 μM for AA, AC and, Caf with the detection limit of 6.28, 3.64 and 3.85 nM, respectively. Besides, the ZnO-Zn2SnO4-SnO2/Gr/CPE shows an excellent selectivity, stability, repeatability, and reproducibility for the determination of AA, AC and, Caf. Finally, the proposed sensor was successfully used to show the amount of AA, AC and, Caf in urine, blood serum samples with recoveries ranging between 95.8% and 104.06%.