• Title/Summary/Keyword: Carbon Paper/Cloth

Search Result 11, Processing Time 0.024 seconds

Comparison of Electrode Backing Materials for Polymer Electrolyte Membrane Fuel Cells

  • Sasikumar, G.;Ryu, H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.183-186
    • /
    • 2003
  • In a PEM fuel cell electrode, backing layer has tremendous impact on electrode performance. The backing layer provides structural support for the porous electrode, distributes the reactants to the other layers and acts as a current collector. It has major influence on the water management in a PEM fuel cell. Selection of suitable backing layer material for the fabrication of electrode is thus very important to achieve high performance. In this paper we have compared the performance of PEM fuel cell electrodes fabricated using carbon paper EC-TPI-060T, carbon cloth EC-CCI-060T, (ElectroChem Inc.USA) and Carbon cloth from Textron, USA (CPW 003 grade). Mass transport problem was observed under non-pressurized condition, at high current densities, in the caie of EC-CC1-060T carbon cloth electrode (at $50^{\circ}C$), due to its higher thickness. The performance of carbon paper electrode was higher than EC-CCI-060T carbon cloth electrode. The performance of Textron carbon cloth was comparable to EC-TPI -060T carbon paper.

The Characteristics Evaluation of the Gas Diffusion Layer for a PEM Fuel Cell by Computational Fluid Dynamics (CFD 해석을 이용한 PEMFC 용 기체확산층의 특성평가)

  • Kim B.H.;Choi J.P.;Jeon B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.207-210
    • /
    • 2005
  • In this paper, a two-dimensional cross-channel model was applied to investigate influence of the gas diffusion layer(GDL) property and flow field geometry in the anode side for proton exchange membrane fuel cell(PEMFC). The GDL is made of a porous material such as carbon cloth, carbon paper, or metal wire mesh. To the simplicity, the GDL is represented as a block of material containing numerous pathways through which gaseous reactants and liquid water can pass. The purpose of present work was to study the effect of the GDL thickness and the porosity, and flow field geometry by computational fluid dynamics(CFD)

  • PDF

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan;Xuan Wang
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.72-78
    • /
    • 2024
  • The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

Preparation and Performance Evaluation of Gas Diffusion Layer Made of Carbon Compounds/Polymer Binder Composites (탄소화합물/Polymer Binder 복합체를 이용한 기체확산층 제조 및 성능 평가)

  • Lee, J.J.;Choi, Bum-Choul;Park, Y.K.;Lee, Jae-Young;Lee, Hong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.92.2-92.2
    • /
    • 2011
  • 고분자전해질 연료전지 (PEMFC)의 가격 결정 요인 중 막 전극 접합체 (MEA)가 차지하는 비중은 약 45%정도이며, 이것을 구성하는 주요 부품인 기체 확산층 (GDL)은 carbon paper나 carbon cloth 형태가 사용되고 있다. 그렇지만 GDL을 제조하는 공정은 매우 복잡하고, 그 가격이 너무 높은 단점이 있다. 본 연구에서는 카본블랙, 흑연 등의 탄소화합물과 polymer binder를 이용하여 단순화된 공정으로 GDL을 제조하였다. 또한, GDL의 물리적 특성이 전극 성능에 미치는 영향을 분석하기 위하여 표면 morphology, 접촉각 및 표면에너지, 전기전도도, 기체투과도, porosity, pore distrivution 등을 측정하였고, 각각의 GDL 표면에 동량의 Pt 촉매를 도포하여 MEA를 제작한 후 그 성능을 평가하였다.

  • PDF

Performance of Membrane Electrode Assembly for DMFC Prepared by Bar-Coating Method (Bar-Coating 방법으로 제조한 직접메탄올 연료전지 MEA의 성능)

  • Kang, Se-Goo;Park, Young-Chul;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Jang, Jae-Hyuk;Peck, Dong-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The key component of a direct methanol fuel cell (DMFC) is the membrane electrode assembly (MEA), which comprises a polymer electrolyte membrane and catalyst layers (anode and cathode electrode). Generally the catalyst layer is coated on the porous electrode supporter (e.g. carbon paper or cloth) using various coating methods such as brushing, decal transfer, spray coating and screen printing methods. However, these methods were disadvantageous in terms of the uniformity of catalyst layer thickness, catalyst loss, and coating time. In this work, we used bar-coating method which can prepare the catalyst layer with uniform thickness for MEA of DMFC. The surface and cross-section morphologies of the catalyst layers were observed by SEM. The performances and resistance of the MEAs were investigated through a single cell evaluation and impedance analyzer.

Comparison of Cell Performance with Physical Properties of Gas Diffusion Layers in PEMFCs (고분자전해질 연료전지에서 다양한 기체확산층의 물리적 특성과 연료전지 성능 비교)

  • Lee, Ji-Jung;Kim, In-Tae;Zhang, Yan;Lee, Hong-Ki;Shim, Joong-Pyo
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.270-278
    • /
    • 2007
  • PEMFC electrodes with various gas diffusion layers (GDL) were characterized to find out the effect of GDL on fuel cell performance. The physical properties of GDL such as electric conductivity, porosity, air permeability, water flux, PTFE content, etc had close relationship each other and affected on the variation of the cell performance. It was observed that the micro-porous layer (MPL) on carbon paper or cloth changed the physical properties of GDL and changed the cell performance. The variation of cell performance as a function of the physical properties of GDL showed different behaviors according to the amount of current density.

A Study on the Performance Analysis of Mobile Fuel Cell (모바일용 연료전지의 성능해석에 관한 연구)

  • Kim, Kwang-Soo;Choi, Jong-Pil;Jeong, Chang-Ryeol;Jang, Jae-Hyeok;Jeon, Byeong-Hee;Kim, Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.115-121
    • /
    • 2008
  • In this paper, a three-dimensional computational fluid dynamic model of a proton exchange membrane fuel cell(PEMFC) with serpentine flow channel is presented. A steady state, single phase and isothermal numerical model has been established to investigate the influence of the GDL (Gas Diffusion Layer) parameters. The GDL is made of a porous material such as carbon cloth, carbon paper or metal wire mesh. For the simplicity, the GDL is modeled as a block of material having numerous pathways through which gaseous reactants and liquid water can pass. The porosity, permeability and thickness of the GDL, which are employed in the model parameters significantly affect the PEMFC performance at the high current region.

Enhanced Desalination Performance through Nafion-coated Cathode in Capacitive Deionization (축전식 탈염에서 나피온 코팅 음극을 통한 담수화 성능 향상)

  • Kim, Jieun;Jung, Seongwoo;Kim, Jinwook;Kim, Jaehwan;Kwak, Rhokyun
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.13-20
    • /
    • 2022
  • An effective capacitive deionization process termed membrane capacitive deionization (MCDI) is newly designed and experimentally tested for seawater desalination. By preventing co-ions to be expelled, MCDI can improve the ion removal performance, but there is a trade-off between blocking co-ion transfer and increasing contact resistance. The conventional MCDI uses 2D-shaped films which increase contact resistance and reduce desalination performance in the trade-off. In this paper, with the 3-D shape of Nafion coated activated carbon cloth, the mentioned problems are expected to be solved making the desalination performance better. We visualized ion concentration and fluid flows with half-MCDI cell that can measure only efficiency of cathode. We found the optimal number of coatings which have the better efficiency than CMX, commercial cation exchange membrane in fixed current conditions of 100uA.

The Therapeutic Effect of Hovenia dulcis Thunberg Extracts and 6 Types of Herbal Extracts on $CCl_4-Induced$ Acute Liver and Kidney Damages in Rats (헛개나무추출액 및 생약성분의 혼용이 사염화탄소 투여로 유발된 흰쥐의 급성 간 및 신장손상의 회복에 미치는 영향)

  • Lim, Mee-Kyoung;Kim, Joo-Wan;Kim, Ji-Eun;Kim, Hong-Tae;Jung, Sang-Ju;Kang, Mi-Young;Lee, Keun-Woo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.400-405
    • /
    • 2007
  • This study was performed to investigate the therapeutic effects of Hovenia dulcis Thunberg (HDT) and HDTmix extracts on the biochemical analysis, histopathology and histomorphometry of liver and kidney in carbon tetrachloride $(CCl_4)$ administrated rats. Extract was prepared by autoclave ($121^{\circ}C$, 15 psi, 3 hours) and filtered with nylon cloth and filter paper then freezing dried. In blood chemistry analysis, HDTmix group, aspartate aminotransferase and alanine aminotransferase were significantly (p<0.01) decreased compared to the $CCl_4$ group, on 3rd day, respectively. In histologic and histomorphometry analysis, the $CCl_4-related$ hepatopathies and nephropathies were dramatically decreased (3rd, 5th day), and well corresponded to the histopathological changes significantly (p<0.01) decreases of degenerative regions, degenerative cells and glomeruli were detected in liver and kidney with significantly decreases of $CCl_4$ group. HDTmix group, quite similar effects on the liver and kidney were observed compared to that of HDT extracts group but more favorable efficacies were detected especially HDTmix also inhibit the hepatopathies (1 day), in which HDT extract does not showed any inhibit effects.

Simluation of PEM Fuel Cell with 2D Steady-state Model (2차원 정상상태 모델을 이용한 고분자전해질형 연료전지의 모사)

  • Chung, Hyunseok;Ha, Taejung;Kim, Hyowon;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.915-921
    • /
    • 2008
  • In most PEM fuel cell research, effects of cell geometry, physical properties of component such as membrane, carbon cloth, catalyst, etc. and water transport phenomena are key issues. The scope of these research was limited to single cell and stack except BOP(Balance of plant) of fuel cell. The research fouced on the fuel cell system usually neglect to consider detailed transport phenomena in the cell. The research of the fuel cell system was interested in a system performance and system dynamics. In this paper, the effect of the anode recirculation is calculated using the 2D steady-state model. For this work, 2D steady-state modeling and experiments are performed. For convenience of modifying of model equation, not commercial pakage but the in-house algorithm was used in simulation. For an vehicle industry, the analysis of the anode recirculation system helps the optimization of operating condition of the fuel cell.