• 제목/요약/키워드: Carbon Offset

검색결과 77건 처리시간 0.026초

Low-impedance Tetrodes using Carbon Nanotube-Polypyrrole Composite Deposition

  • Kim, Minseo;Shin, Jung Hwal;Lim, Geunbae
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.73-78
    • /
    • 2017
  • A tetrode is one of the neural electrodes, and it is widely used to record neural signals in the brain of a freely moving animal. The impedance of a neural electrode is an important parameter because it determines the signal-to-noise ratio of the recorded neural signals. Here, we developed a modification technique using carbon nanotube-polypyrrole composite nanostructures to decrease the impedances of tetrodes. The synthesis of the carbon nanotube and polypyrrole nanostructures was performed in two steps. In the first step, randomly dispersed carbon nanotubes and pyrrole monomers were gathered and aligned on the tetrode electrode. Next, they were electro-polymerized on the electrode surface. As the applied time (step-1 and step-2) and the offset voltage increased, the impedances of the tetrodes decreased. The modification technique is, therefore, an important and useful of lowering the impedances of tetrodes.

탄소흡수원을 고려한 개발사업 환경영향평가 방안(I) - 태양광발전소 건설사업 사례를 중심으로 - (Environmental Impact Assessment for Development Projects Considering Carbon Sink and Sequestration(I) - Focused on a Solar Power Plant Development Project -)

  • 황상일;박선환
    • 환경영향평가
    • /
    • 제19권6호
    • /
    • pp.625-631
    • /
    • 2010
  • The objective of this work was to investigate how carbon sink and sequestration of vegetation and soil in the development project area can impact the land use plan, in addition to carbon emission capacity of the development project when we conduct environmental impact assessment. Especially, we did this work for a development project of solar power plant which would be constructed in forest area. Through this work, we found that 1) the amount of carbon sink and sequestration largely decreased due to reduction of the green area, 2) in terms of carbon sink and sequestration, conservation of natural green area is better than construction of newly vegetated area, 3) biochar application into soil can become an alternative for increase of carbon sink, and 4) even though a solar power production does hugely reduce carbon emissions and offset the carbon sink and sequestration capacity from the forest, it is necessary to consider the public value of the forest(reduction of heat island, habitat etc.) in siting for development area.

친환경 선박 개발에 따른 해외 그린수소 수입에 대한 탄소 배출 영향 및 수소 단가 분석 (Analysis of Carbon Emission Effects and Hydrogen Prices for Overseas Green Hydrogen Imports by Development of Green Ship)

  • 김도형;최예빈;오지현;박철호
    • 한국수소및신에너지학회논문집
    • /
    • 제35권1호
    • /
    • pp.1-13
    • /
    • 2024
  • Hydrogen is emerging as an essential material for carbon neutrality. In particular, Korea needs 22.9 million tons of imported clean hydrogen by 2050 to achieve carbon neutrality. However, a large amount of carbon is emitted during the import process, and market regulations are being discussed. This research estimates the carbon emissions of importing green hydrogen from Vietnam, Australia, and the United Arab Emirates to Korea, and calculates imported green hydrogen prices under carbon emission market regulations.

Stable Oxygen and Carbon Isotope Profiles of the Bivalve Shells collected from Coastal Regions of Korea: Comparison of the Coastal Water Properties

  • Khim, Boo-Keun
    • Journal of the korean society of oceanography
    • /
    • 제32권1호
    • /
    • pp.28-37
    • /
    • 1997
  • Two marine bivalve shells were collected from the eastern and western coastal regions of Korea, respectively. Stable oxygen and carbon isotope profiles are constructed using the incremental sampling along the axis of maximum growth to provide the continuous ${\delta}^{18}$O and ${\delta}^{13}$C records, which register the physical, biological and chemical properties of seawater where the organisms live. Cycles in the ${\delta}^{18}$O profiles are interpreted as annual along with the identification of annual growth bands; the maximum ${\delta}^{18}$O values correspond with the coldest temperature of seawater whereas the minimum ${\delta}^{18}$O values with the warmest temperature. The primary control on the amplitude of the ${\delta}^{18}$O profiles is seasonal variation of seawater temperature. The offset of the baseline between ${\delta}^{18}$O values of the two specimens is attributed to differences in both temperature and seawater ${\delta}^{18}$O values between two localities. The ${\delta}^{13}$C profiles show the similar seasonality of carbon cycling associated with phytoplankton productivity. The offset in the ${\delta}^{13}$C profiles between two specimens may be, as in the case of oxygen isotope profile, attributed to the different ${\delta}^{13}$C value of the seawater DIC (dissolved inorganic carbon) between the western coast and the eastern coast. Relationships between the shell isotopic composition and the coastal water properties of shell growth are readily interpreted from the ${\delta}^{18}$O-${\delta}^{13}$C pair diagram of the shell isotope data, similar to the use of salinity-${\delta}^{18}$O diagram for identifying water masses. The preliminary stable isotope results of this study suggest that mollusk shell isotope geochemistry may be useful to monitor the properties of water masses in the coastal and inner shelf setting around Korea and improve the interpretation of paleoceanography, provided the fossil mollusks are well preserved.

  • PDF

Impacts of Mt. Bongeui on Atmospheric Purification in Chuncheon

  • Piao, Zhi Hui;Jo, Hyun-Kil
    • Journal of Forest and Environmental Science
    • /
    • 제34권2호
    • /
    • pp.165-168
    • /
    • 2018
  • Mt. Bongeui is a neighborhood park of 66.4 ha as a major natural landscape resource located in the center of Chuncheon City. This study quantified the reduction of carbon, $SO_2$, $NO_2$, $O_3$, and $PM_{2.5}$, and the production of $O_2$ to explore the role for Mt. Bongeui to contribute to annual atmospheric purification. The main forest types and age classes of the study site included age-class III broadleaved forest at 35.8%, age-class VI coniferous forest at 17.2%, and age-class IV broadleaved forest at 15.7%. The annual atmospheric purification effect per unit area was as follows: 7.6 t carbon/ha/yr, 16.6 kg $SO_2/ha/yr$, 40.4 kg $NO_2/ha/yr$, 41.5 kg $O_3/ha/yr$, 53.7 kg $PM_{2.5}/ha/yr$, and 20.2 t $O_2/ha/yr$. The economic value of these effects was equivalent to about 12.9 million KRW/ha/yr. The study site annually offset carbon emissions of about 300 citizens, $SO_2$ emissions of 220 citizens, and $NO_2$ emissions of 92 citizens in Chuncheon. It also played an important role in annually producing 1.5% of the amount of $O_2$ necessary for the respiration of Chuncheon's total population. This study pioneers in comprehensively quantifying the atmospheric purification effect and could be useful in guiding the planning and management to improve the effect.

공공용지 녹지의 탄소저감과 증진방안 (Carbon Reduction and Enhancement for Greenspace in Institutional Lands)

  • 조현길;박혜미;김진영
    • 한국조경학회지
    • /
    • 제48권4호
    • /
    • pp.1-7
    • /
    • 2020
  • 본 연구는 도시의 공공용지 녹지에 의한 탄소의 연간 흡수 및 저장을 계량화하고, 탄소저감 효과를 증진하기 위한 녹지구조의 개선방안을 제시하였다. 연구대상 도시는 규모와 분포지방을 고려하여 서울시, 대전시, 대구시, 춘천시, 순천시 등 총 5개 도시를 표본 선정하였다. 대상 도시의 항공사진 상에서 체계적 임의 표본추출방법을 통해 표본 공공용지를 선정하고, 녹지의 수평적 및 수직적 구조를 실사하였다. 도시 조경수목을 대상으로 개발한 수종별 계량모델을 적용하여, 식재수목에 의한 탄소의 연간 흡수 및 저장량을 산정하였다. 연구대상 공공용지의 교목밀도는 도시들 모두에 걸쳐 평균 1.4±0.1주/100㎡이고, 흉고직경은 14.9±0.2cm이었다. 녹지의 수직구조는 교목, 관목 또는 잔디만 식재한 단층구조의 비율이 다층구조보다 더 높았다. 식재수목에 의한 단위면적당 연간 탄소흡수량은 평균 0.65±0.04t/ha/yr이고, 단위면적당 탄소저장량은 7.37±0.47t/ha로서, 국내·외의 타 녹지공간 유형에 비해 낮은 탄소저감 효과를 보였다. 이는 연구대상 공공용지의 식재수목 밀도와 규격이 상대적으로 저조하기 때문이었다. 그럼에도 불구하고, 공공용지의 녹지는 공공용 전력소비에 따른 탄소배출을 도시에 따라 해마다 0.6(서울)~1.9%(춘천) 상쇄시키는 셈이었다. 잠재식재공간 내 수목식재는 기존 연간 탄소흡수량을 약 18% 추가 증진 가능하였다. 공공용지 녹지의 탄소저감 효과를 증진하기 위해서는 잠재식재공간의 적극적 수목식재, 상층 교목, 중층 교목 및 하층 관목으로 구성되는 다층 군식의 추진, 탄소흡수 능력이 양호한 교목종의 상층 식재, 상록수종의 토피어리, 관리회피 등이 요구된다. 본 연구는 국내 미진한 공공용지의 녹지구조 및 탄소상쇄를 구명하는데 중점을 두었다.

도시녹지의 에너지절약 및 대기 $CO_2$ 농도저감과 계획지침 (Energy Saving and Reduction of Atmospheric $CO_2$ Concentration by, and Planning Guideline for Urban Greenspace)

  • 조현길;이기의
    • 한국조경학회지
    • /
    • 제27권5호
    • /
    • pp.38-47
    • /
    • 2000
  • Carbon dioxide is a major greenhouse gas causing climate change. This study quantified annual direct and indirect uptake of carbon by urban greenspace, and annual carbon release from vegetation maintenance and fossil fuel consumption. The study area was whole Chuncheon and Kangleung, and also two districts of Kangnam and Junglang in Seoul, cities located in middle Korea. Carbon uptake by urban greenspace played an important role through offsetting carbon release by 6-7% annually in Chuncheon and Kangleung. For Kangnam and Junglang, where the population density was relatively higher, urban greenspace annually offset carbon release by 1-2%. Future possible tree plantings could double annual carbon uptake by existing trees in urban lands (except natural and agricultural lands) of a study city. Based on study results, planning and management guidelines for urban greenspace were suggested to save energy and to reduce atmospheric $CO_2$ concentrations. They included selection of optimum tree species, proper planting location from buildings, design of multilayered planting, amendment of existing regulations for greenspace enlargement, avoidance f intensive vegetation maintenance, and conservation of natural vegetation.

  • PDF

강원도 일부도시의 경관내 탄소흡수 및 배출과 도시녹지의 역할 (Carbon Uptake and Emissions in Urban Landscape, and the Role of Urban Greenspace for several Cities in Kangwon Province)

  • 조현길
    • 한국조경학회지
    • /
    • 제27권1호
    • /
    • pp.39-53
    • /
    • 1999
  • This study quantified carbon uptake and emissions in urban landscape, and the role of urban greenspace in atmospheric carbon reduction for several cities of Chuncheon and Kangleung in Kangwon province. Mean carbon storage by trees and shrubs was 26.0 t (mertric tons)/ha in Chuncheon and 46.7 t/ha in Kangleung for natural lands, and ranged from 4.7 to 6.3 t/ha for urban lands (all land use types except natural and agricultural lands) in both cities. Mean annual carbon uptake by trees and shrubs ranged from 1.60 to 1.71 t/ha/yr for natural lands, and from 0.56 to 0.71 t/ha/yr for urban lands. There was no significant difference (95% confidence level) between the two cities in the carbon storage and annual carbon uptake per ha, except the carbon storage for natural lands. Organic carbon storage in soils (to a depth of 60 cm) of Chuncheon average 24.8 t/ha for urban lands and 31.6 t/ha for natural lands, 1.3 times greater than for urban lands. Annual carbon accumulation in soils was 1.3 t/hr/yr for natural lands of the study cities. Annual per capita carbon emissions from fossil fuel consumption were 1.3 t/yr in Chunceon and 1.8 t/yr in Kangleung. The principal carbon release in urban landscapes was from transport and industry. Total carbon storage by urban greenspace (trees, shrubs, and soils) equaled 66% of total carbon emissions in Chuncheon and 101% in Kangleung. Carbon uptake by urban greenspace annually offset total carbon emissions by approximately 4% in the study cities. Thus, urban greenspace played a partial important role in reducing atmospheric $CO_2$ concentrations. To increase $CO_2$ uptake and storage by urban greenspace, suggested are conservation of natural lands, minimization of hard surfaces and more plantings, selection of tree species with high growth rate, and proper management for longer healthy tree growth.

  • PDF

Carbon Storage of Exotic Slash Pine Plantations in Subtropical China

  • Jin, Ling;Liu, Yuanqiu;Ning, Jinkui;Liu, Liangying;Li, Xiaodong
    • Journal of Forest and Environmental Science
    • /
    • 제35권3호
    • /
    • pp.150-158
    • /
    • 2019
  • Exotic conifer trees have been extensively planted in southern China because of their high apparent growth and yield. These fast-growing plantations are expected to persist as a considerable potential for temporary and long-term carbon sink to offset greenhouse gas emissions. However, information on the carbon storage across different age ranges in exotic pine plantations is often lacking. We first estimated the ecosystem carbon storage across different age ranges of exotic pine plantations in China by quantifying above- and below-ground ecosystem carbon pools. The carbon storage of each tree component of exotic pine (Pinus elliottii) increased significantly with increasing age in Duchang and Yiyang areas. The stem carbon storage except <10 years in Ji'an areas was the largest component among all other components, which accounts for about 50% of the total carbon storage followed by roots (~28%), branches (~18%), and foliage (~9%). The mean total tree carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across three study areas was 3.69, 13.91 and $20.57Mg\;ha^{-1}$, respectively. The carbon stocks in understory and forest floor were age-independent. Total tree and soil were two dominant carbon pools in slash pine plantations at all age sequences. The carbon contribution of aboveground ecosystem increased with increasing age, while that of belowground ecosystem declined. The mean total ecosystem carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across China was 30.26, 98.66 and $98.89Mg\;ha^{-1}$, respectively. Although subtropical climate in China was suitable for slash pine growth, the mean total carbon stocks in slash pine plantations at all age sequences from China were lower than that values reported in American slash pine plantations.

저압 MOCVD로 CBr4 가스를 사용하여 탄소 도핑된 GaAs 에피층의 결정학적 방향에 따른 전기적 성질의 의존성 (Crystallographic Orientation Dependence Of Electrical Properties of Carbon-doped GaAs Grown by Low Pressure Metalorganic Chemical Vapor Deposition Using CBr4)

  • 손창식
    • 한국전기전자재료학회논문지
    • /
    • 제15권3호
    • /
    • pp.214-219
    • /
    • 2002
  • In order to elucidate the crystallographic orientation dependence of electrical properties of carbon (C)-doped GaAs epilayers, C incorporation into GaAs epilayers on high-index GaAs substrates with various crystallographic orientations from (100) to (111)A has been performed by a low pressure metalorganic chemical vapor deposition using C tetrabromide ($CBt_4$) as a C source. The hole concentration of C-doped GaAs epilayers rapidly decreases with a hump at (311)A with increasing the offset angle. Although the growth temperature and the V/III ratio are varied, the crystallographic orientation dependence of hole concentration show a same trend. The above behaviors indicate that the bonding strength of As sites on a glowing surface plays an important role in the C incorporation into the high-index GaAs substrates.