• Title/Summary/Keyword: Carbon Number

Search Result 1,423, Processing Time 0.029 seconds

Alcohol Gas Sensors using Spray-coated Carbon Nanotube Thin Film (스프레이 코팅된 탄소나노튜브 박막을 이용한 알코올 가스 센서)

  • Kim, Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.783-788
    • /
    • 2008
  • We suggest a CNT-based gas sensor for breath alcohol measurement. The sensor was composed of single-walled carbon nanotubes (SWCNTs) thin film on flexible PES (polyethersulfone) substrate, and the SWCNTs thin film was formed by multiple spray-coating with SWCNTs solution which was well-dispersed, highly controlled and functionalized in ethanol solvent. In this work, three types of SWCNTs thin films were deposited with changes in the number of spray-coatings to 20, 40 and 60 times in order to compare electrical response properties of the SWCNTs thin films. from the fabricated sensors, conductance and capacitance responses were measured and discussed. Alcohol gas sensors have been commercialized widely as gauge for breath alcohol measurement which is applicable to checking whether car drivers are drinking-driving or not. Our alcohol gas sensors showed good sensitivity and linearity even at room temperature.

Preparation and Properties of Polymer PTC Composites for Process Safety (공정안전용 Polymer PTC 소재의 제조 및 특성)

  • 강영구;조명호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.101-108
    • /
    • 2003
  • Polymeric positive temperature coefficient(PTC) composites have been prepared by incorporating carbon black(CB) into high density polyethylene(HDPE), polyphenylene sulfide(PPS) and polybutylene terephthalate(PBT) matrices. A PTC effect was observed in the composite, caused by the large thermal expansion due to He consecutive melting of HDPE, PPS and PBT crystallites. This theory is based upon the premise that the PTC phenomenon is due to a critical separation distance between carbon particles in the polymer matrix at the higher temperature. The influence of PTC characteristics of the PPS/CB composite can be explained by DSC result. HDPE, one of prepared composition, exhibit the higher performance PTC behavior that decreaseing of negative temperature coefficient(NTC) effect and improved reproducibility by chemically crosslinking. Also, PBT/CB and PPS/CB composites exhibit the higher PTC peack temperature than HDPE/CB PTC composite, individually $200^{\circ}C$ and $230^{\circ}C$. These PTC composite put to good use in a number of safety application, such as self$.$controlled heater, over-current protectors, auto resettable switch, high temperature proctection sensor, etc.

A Study on Friction and Wear Characteristics of Nano-size Carbon (나노 사이즈 탄소입자의 마찰마모 특성에 관한 연구)

  • Jung, Kwang-Woo;Choi, Jeong-Kyu;Moon, Seong-Yong;Chung, Keun-Woo
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.264-268
    • /
    • 2008
  • A large number of additives have been used with the efforts of improving the performance of lubricants used along with the development of internal combustion engine. In this study, nano-sized graphite was used as liquid-lubricant additive. In order to disperse graphite into oil, we esterified the nano-carbon manufactured by our company with various types of alcohol. After measuring the anti-wear in accordance with the types of alcohol and added concentration, it has been found that its anti-wear/friction decrease has been improved in case of adding 0.1% of the sample composed with C12/14 mixed alcohol & hexadecanol.

Performance Analysis of Fin-tube Evaporator for Carbon Dioxide (이산화탄소용 핀-관 증발기의 성능해석)

  • 이민규;김영일;장영수;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.645-651
    • /
    • 2004
  • Fin-tube evaporator for carbon dioxide has been investigated both by experiment and simulation. Inside refrigerant heat transfer and outside heat and mass transfer of a wet surface heat exchanger were modeled using appropriate correlations. The results estimated by the calculation were in good agreement with the experimental results. The simulation errors were less than 7.9% for estimating capacity, 0.6$^{\circ}C$ for air exit temperature, 1.2% for air exit humidity and 17% for $CO_2$ exit pressure. The simulation program was used to study the effect of air flow direction, number of rows and refrigerant circuits. For a 2-row evaporator, parallel flow showed better performance for low air velocity but for high air velocity, counter-flow was better. Refrigerant circuits, however, showed insignificant effect on the performance.

Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory

  • Belmahi, Samir;Zidour, Mohammed;Meradjah, Mustapha
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • This present article represents the study of the forced vibration of nanobeam of a single-walled carbon nanotube (SWCNTs) surrounded by a polymer matrix. The modeling was done according to the Euler-Bernoulli beam model and with the application of the non-local continuum or elasticity theory. Particulars cases of the local elasticity theory have also been studied for comparison. This model takes into account the different effects of the interaction of the Winkler's type elastic medium with the nanobeam of carbon nanotubes. Then, a study of the influence of the amplitude distribution and the frequency was made by variation of some parameters such as (scale effect ($e_0{^a}$), the dimensional ratio or aspect ratio (L/d), also, bound to the mode number (N) and the effect of the stiffness of elastic medium ($K_w$). The results obtained indicate the dependence of the variation of the amplitude and the frequency with the different parameters of the model, besides they prove the local effect of the stresses.

Inactivation and Filtration of Bioaerosols Using Carbon Fiber Ionizer Assisted Activated Carbon Fiber Filter (탄소섬유 이오나이저를 적용한 활성탄소섬유 필터의 바이오에어로졸 항균 및 집진 성능평가)

  • Kim, Doo Young;Park, Jae Hong;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.185-192
    • /
    • 2010
  • This paper reports that the installation of a carbon fiber ionizer in front of an activated carbon fiber(ACF) filter enhanced the antibacterial efficiency. In addition, the effect of the ionizer on the filtration of bioaerosols is reported. Negative air ions from the ionizer were used as antibacterial agent. The test bacteria(Escherichia coli) were aerosolized using an atomizer and were deposited on the ACF filter media for 10 minutes. E. coli deposited on the filter were exposed to negative air ions for 0, 1, 5 and 10 minutes. Then they were separated from the ACF filter by shaking incubation with nutrient broth for 4 hours. The separated E. coli were spread on nutrient agar plates and incubated at $37^{\circ}C$ for 1~3 days. The antibacterial efficiency of E. coli was measured using a colony counting method. The antibacterial efficiencies of E. coli exposed to negative air ions for 1, 5 and 10 minutes were 14%, 48% and 71%, respectively. The filtration efficiency was evaluated by measuring the number concentration of bioaerosols at the upstream and downstream of the filter media. The increase of filtration efficiency by air ions was 14%, that is similar to the 17% filtration efficiency by none air ions. The ozone concentration was below the detection limit (under 0.01ppm) when the carbon fiber ionizers were on.

Iron Oxide-Carbon Nanotube Composite for NH3 Detection (산화철-탄소나노튜브 나노복합체의 암모니아 가스센서 응용)

  • Lee, Hyundong;Kim, Dahye;Ko, DaAe;Kim, Dojin;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.187-193
    • /
    • 2016
  • Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with $500^{\circ}C/2h$ oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.

Effects of Nano-sized Carbon Black on the Lungs of High Fat-diet Induced Overweight Rats

  • Lim, Cheol-Hong;Kang, Mingu;Han, Jeong-Hee;Yun, Hyo-In
    • Environmental Analysis Health and Toxicology
    • /
    • v.28
    • /
    • pp.14.1-14.9
    • /
    • 2013
  • Objectives This study was conducted to determine whether nano-sized carbon black exposure results in greater damage in high fat diet-induced overweight rats than normal weight ones and to identify the possible causes of any differences. Methods Two groups of Sprague-Dawley rats allocated by body weight (normal and overweight) were exposed to aerosolized nano-sized carbon black for 6 hours a day, 5 days per week over a 4-week period. Differential cell counts, lactate dehydrogenase (LDH) activities and albumin concentrations were measured in bronchoalveolar lavage (BAL) fluid, and histopathological findings in the lungs were evaluated. Tumor necrosis factor-alpha (TNF-${\alpha}$) and interleukin (IL)-6 were measured in BAL fluid and supernatants of lipopolysaccharide(LPS)-stimulated lymphocyte culture. Results Rats exposed to high concentrations of nano-sized carbon black showed significantly increased (p <0.05) polymorphonuclear leukocyte number and LDH activity in the BAL fluid from both overweight and normal rats. Mild histopathological changes were observed in normal rats irrespective of carbon black concentrations. However, severe histological scores were found in overweight rats ($1.75{\pm}0.46$, $2.25{\pm}0.46$, and $2.88{\pm}0.35$ after low, medium, and high concentration exposures). Proinflammatory cytokine levels of TNF-${\alpha}$ and IL-6 were significantly higher in the supernatant of LPS-stimulated lymphocytes of overweight rats, whereas there was no significant difference in the BAL fluid between normal and overweight rats. Conclusions Inflammation and damage to lungs exposed to nano-sized carbon black was more severe in high fat diet-induced overweight rats compared to normal rats.

The Study on Certification status and Carbon Emission Characteristic of Building Products among Carbon Labeled Products (탄소성적표지인증 제품 중 건축자재의 인증 현황 및 탄소배출특성 분석에 관한 연구)

  • Seo, Sung Mo;Chae, Chang-U;Lee, Kang Hee
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.101-111
    • /
    • 2014
  • The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI(Korea Environmental Industry & Technology Institute), as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components or elements, are classified as production goods which means that the products are chosen by a business, not by a final consumer. In this paper, current status of PCF labeling has been reviewed focused on building products and the characteristics of carbon emission by a kind of product such as interior products, window products, structural products, system products and others. Until Dec. 2013, 82 products has been labeled and it covers about 53% among labeled product goods by the certification. Among the labeled building products, interior products are main products. From the results of comparison, variations of emission amounts by products have been found and the cause of variation could be explained by the purpose and material properties of products. However, the exact reason for variations cannot be acquired because of lack of information and the short operation period of the certification program. Further studies and more products are needed to be studied and analyzed focused on the emission characteristic by each product and to suggest reduction technologies for sustainable building products.

Adsorption Characteristics of Ammonia Complex of Copper(II) on Activated Carbon (활성탄에 의한 구리(II) 암모니아 착염이온의 흡착 특성)

  • Hong, Wan-Hae;Kim, Jung-Gyu;Na, Sang-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 1997
  • The adsorption characteristics of ammonia-Cu(II) complex on activated carbon were studied. Firstly, the specific surface area of the activated carbon was measured by using the BET adsorption apparatus. Secondly, the characteristics of the removal copper(II) ion from aqueous ammonia solution by forming a complex with ammonia and then by the adsorption of the complex on the activated carbon were studied. It was found that the specific surface area increases with decreasing the mesh number of the activated carbon, and the optimum pH for the adsorption of the Cu(II) ion on she activated carbon was found to be approximately 6. It was also found that the adsorbed Cu(II)-ammonia complexes on the activated carbon in the aqueous ammonia solution have two types, depending on the concentration of the solution ; i.e. $[Cu(NH_3){_2}]^{2+}$and $[Cu(NH_3){_3}]^{2+}$ for $2.25{\times}10^{-4}(mol/{\ell})$and $2.25{\times}10^{-3}(mol/{\ell})$, respectively.

  • PDF