• Title/Summary/Keyword: Carbon Monoxide Sensor

Search Result 52, Processing Time 0.026 seconds

A Study on the Early Fire Detection by Using Multi-Gas Sensor (다중가스센서를 이용한 화재의 조기검출에 대한 연구)

  • Cho, Si Hyung;Jang, Hyang Won;Jeon, Jin Wook;Choi, Seok Im;Kim, Sun Gyu;Jiang, Zhongwei;Choi, Samjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • This paper introduced a novel multi-gas sensor detector with simple signal processing algorithm. This device was evaluated by investigating the characteristics of combustible materials using fire-generated smell and smoke. Plural sensors including TGS821, TGS2442, and TGS260X were equipped to detect carbon monoxide, hydrogen gas, and gaseous air contaminants which exist in cigarette smoke, respectively. Signal processing algorithm based on the difference of response times in fire-generated gases was implemented with early and accurately fire detection from multiple gas sensing signals. All fire experiments were performed in a virtual fire chamber. The cigarette, cotton fiber, hair, polyester fiber, nylon fiber, paper, and bread were used as a combustible material. This analyzing software and sensor controlling algorithm were embedded into 8-bit micro-controller. Also the detected multiple gas sensor signals were simultaneously transferred to the personnel computer. The results showed that the air pollution detecting sensor could be used as an efficient sensor for a fire detector which showed high sensitivity in volatile organic compounds. The proposed detecting algorithm may give more information to us compared to the conventional method for determining a threshold value. A fire detecting device with a multi-sensor is likely to be a practical and commercial technology, which can be used for domestic and office environment as well as has a comparatively low cost and high efficiency compared to the conventional device.

Fabrication and Characterization of Thick Film Ammonia Gas Sensor (후막형 암모니아 가스 센서의 제조 및 가스 감응 특성)

  • Yun, Dong-Hyun;Kwon, Chul-Han;Hong, Hyung-Ki;Kim, Seung-Ryeol;Lee, Kyu-Chung
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.445-450
    • /
    • 1997
  • An ammonia gas sensor with high sensitivity using thick-film technology were fabricated and examined. The material for sensing the ammonia gas was the mixture of oxide semiconductor, $FeO_{x}-WO_{3}-SnO_{2}$. The sensor exhibits resistance increase upon exposure to low concentration of ammonia gas. The resistance of the sensor is decreased, on the other hand, for exposure to reducing gases such as ethyl alcohol, methane, propane and carbon monoxide. A novel method for detecting ammonia gas quite selectively utilizing a sensor array consisting of an ammonia gas sensor and a compensation element were proposed and developed. The compensation element is a Pt-doped $WO_{3}-SnO_{2}$ gas sensor which shows opposite direction of resistance change in comparison with that of the ammonia gas sensor upon exposure to ammonia gas. Excellent selectivity has been achieved using the sensor array having two sensing elements.

  • PDF

Smoking detection system based on wireless ad-hoc network using Raspberry Pi boards (라즈베리파이를 이용한 무선 애드혹 네트워크 기반의 흡연 모니터링 시스템)

  • Park, Sehum;Kim, Seong Hwan;Ryu, Jong Yul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.65-67
    • /
    • 2018
  • We introduce a system that detects smoking in a specific area. The proposed system is implemented on a wireless ad hoc network consisting of Raspberry Pi boards. It is more economical owing to low-cost device than commercial smoking monitoring system and is scalable than the existing system with single Raspberry Pi. In this paper, the probability density function of carbon monoxide concentration during smoking and non-smoking is approximated as Gauusian distribution, respectively, using data measured from sensors for a long time. Based on this, a maximum likelihood detection technique is adopted to estimate the smoking status by observing the concentration of carbon monoxide. We aim at improving the reliability by estimating the smoking status using the collected values from multiple sensors connected to the ad hoc network.

  • PDF

Development and Properties of Carbon monoxide Detector for Ambient Air monitoring (대기오염 측정용 일신화 탄소 검출기의 제작 및 특성)

  • Cho, Kyung-Haeng;Lee, Sang-Wha;Lee, Joung-Hae;Choi, Kyong-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2000
  • A detector for monitoring carbon monoxide (CO) in ambient air by nondispersive infrared (NDIR) spectroscopy has been developed and investigated its sensitivity and stability. The essential parts of the absorption cell are three spherical concave mirrors so as to improve the sensitivity by increasing the light path length in the cell. The radius and center of curvature of mirrors and position in the cell was calculated by computer simulation in order that the light path length may be 16m into the 50cm cell. The number of traversals and optical path properties were confirmed by laser beam alignment in transparent absorption cell. The photoconductive type lead selenide (PbSe) was used as CO sensing material, which was cooled to increase the responsibility by thermoelectric cooling method. The detection limit and span drift of the developed CO detector was 0.24ppm and 0.03ppm(v/v) respectively.

  • PDF

Gas Sensing Properties of Au-decorated NiO Nanofibers (Au 촉매금속이 첨가된 NiO 나노섬유의 가스 검출 특성)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.296-300
    • /
    • 2017
  • NiO nanofibers with Au nanoparticles were synthesized by sol-gel and electrospinning techniques, in which the reduction process by ultraviolet exposure is included for the growth of Au nanoparticles in the electrospinning solution. FE-SEM(Field Emission Scanning Electron Microscopy), TEM(Transmission Electron Microscopy) revealed that the synthesized nanofibers had the diameter of approximately 200 nm. X-ray diffraction showed the successful formation of Au-decorated NiO nanofibers. Gas sensing tests of Au-decorated NiO nanofibers were performed using reducing gases of CO, and $C_6H_6$, $C_7H_8$, $C_2H_5OH$. Compared to as-synthesized NiO nanofibers, the response of Au-loaded NiO nanofibers to CO gas was found to be about 3.4 times increased. On the other hand, the response increases were only 1.1-1.3 times for $C_6H_6$, $C_7H_8$, and $C_2H_5OH$.

Implementation of the Industrial Hazard Detection System using LoRa Network (LoRa 통신기반 산업재해감지시스템 구현)

  • Seo, Jung-Hoon;Kim, Nak-Hun;Hong, Sung-Yong
    • Journal of Information Technology Services
    • /
    • v.18 no.1
    • /
    • pp.141-151
    • /
    • 2019
  • To protect workers from industrial accidents, IoT hazard detection system using LoRa network was designed and fabricated. LoRa networks can operate with low power consumption, wide coverage, and low usage fees. The hazard detection system consists of a sensor unit, a transceiver module, a LoRa base station, ThingPlug, and a monitoring device. We have designed an optimal risk-determining algorithm that can send information quickly in a working environment. As measured by TTA, the implemented system has been found to be able to deliver the worker's location, ambient temperature, and carbon monoxide density to the administrator through the user interface. The implemented system showed a bit rate of 290bps and a maximum application range of 6 km.

Recognization of Inflammable Gases Using Sensor Array and Principal Component Analysis (센서 어레이와 주성분 기법을 이용한 가연성 가스 인식)

  • Lee, Dae-Sik;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.108-117
    • /
    • 2001
  • A sensor array with 10 discrete sensors integrated on a substrate w3s developed for discriminating the kinds and quantities of inflammable gases, like butane, propane, methane, LPG, carbon monoxide. The sensor array consisted of 10 metal oxide semiconductor gas sensors using the nano-sized $SnO_2$ as base material and had differentiated sensitivity patterns to specific gas. The sensor array was designed with uniform thermal distribution and had also high sensitivity and good reproductivity to low gas concentration through nano-sized sensing materials with different additives. By using the sensing patterns of the sensor array at $400^{\circ}C$, we could reliably discriminate the kinds and quantities of the tested inflammable gases under the lower explosion limit through the principal component analysis(PCA).

  • PDF

Effect of Air-fuel Ratio on Combustion and Emission Characteristics in a Spark Ignition Engine Fueled with Bio-ethanol (공연비 변화가 바이오에탄올 연료 스파크 점화기관의 연소 및 배출물 특성에 미치는 영향)

  • Kim, Dae-Sung;Yoon, Seung-Hyun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this paper is to investigate the effect of air-fuel ratio on the combustion and emissions characteristics of spark ignition (SI) gasoline engine fueled with bio-ethanol. A 1.6L SI engine with 4 cylinders was tested on EC dynamometer. In addition, lambda sensor and lambda meter were connected with universal ECU to control the lambda value which is varied from 0.7 to 1.3. The engine performance and combustion characteristics of bio-ethanol fuel were compared to those obtained by pure gasoline. Furthermore, the exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), oxides of nitrogen ($NO_X$) and carbon dioxide ($CO_2$) were measured by emission analyzers. The results showed that the brake torque and cylinder pressure of bio-ethanol fuel were slightly higher than those of gasoline fuel. Brake specific fuel consumption (BSFC) of bio-ethanol was increased while brake specific energy consumption (BSEC) was decreased. The exhaust emissions of bio-ethanol fuel were lower than those of gasoline fuel under overall experimental conditions. However, the specific emission characteristics of the engine with bio-ethanol fuel were influenced by air-fuel ratio.

Micro Sensor Away and its Application to Recognizing Explosive Gases (마이크로 센서 어레이 제작 및 폭발성 가스 인식으로의 응용)

  • 이대식;이덕동
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.11-19
    • /
    • 2003
  • A micro sensor array with 4 discrete sensors integrated on a microhotplate was developed for identifying the kinds and quantities of explosive gases. The sensor array consisited of four tin oxide-based thin films with the high and broad sensitivity to the tested explosive gases and uniform thermal distribution on the plate. The microhotplate, using silicon substrate with N/O/N membrane, dangling in air by Al bonding wires, and controlling the thickness by chemical mechanical process (CMP), has been designed and fabricated. By employing the sensitivity signal of the sensor array at 40$0^{\circ}C$, we could reliably classily the kinds and quantities of the explosive gases like butan, propane, LPG, and carbon monoxide within the range of threshold limit values (TLVs), employing principal component analysis (PCA).

Study on IoT-based Map Inside the Building and Fire Perception System (IoT 기반 건물 내부 지도 및 화재 안내 시스템에 관한 연구)

  • Moon, Sung-Ryong;Cho, Joon-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.85-90
    • /
    • 2019
  • This paper is a study on IoT based map inside the building and fire perception system using microprocessor and LABVIEW program. The smart control system implemented in this paper is designed to identify the location of fire by using microprocessor, flame detection sensor, carbon monoxide sensor and temperature sensor, and to guide the optimal travel route through Zigbee communication. And the proposed system uses QR code to interoperate with smartphone. The coordinator control verified that the sensor value of the smart control system installed through the LABVIEW software was confirmed. The IoT based control system studied in this paper was implemented with Arduino mega board and LABVIEW software, and the operation status was confirmed by display device and coordination.