• Title/Summary/Keyword: Carbon Membrane

Search Result 768, Processing Time 0.025 seconds

CONTROL OF CARBON DIOXIDE REMOVAL RATE BY HOLLOW FIBER MEMBRANE CONTACTOR

  • Lee,Yong-Taek;Cho, Ingi;Lim, Hye-Jin;Ahn, Hyo-Seong;Hahm, Moon-Ky;Park, You-In;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.48-51
    • /
    • 1999
  • To investigate numerically the removal behavior of carbon dioxide in a hollow fiber membrane contactor, the system controlling equations were developed including the nonlinear reversible reaction terms. The reversible chemical reactions were incorporated in the system controlling equations, resulting in the coupled nonlinear partial differential equations which could describe either the absorption of the desorption of carbon dioxide. The computer program was coded using the Fortran language and run with a personal computer to find out the effects of the system variables: the pressures of absorbed and desorbed gases, the absorbent flow rate, the concentration of potassium carbonate, the fiber diameter and the length.

  • PDF

Dynamics of C60 Molecules in Biological Membranes: Computer Simulation Studies

  • Chang, Rak-Woo;Lee, Ju-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3195-3200
    • /
    • 2010
  • We have performed molecular dynamics simulations of atomistic models of $C_{60}$ molecules and DMPC bilayer membranes to study the static and dynamic effects of carbon nanoparticles on biological membranes. All four $C_{60}$-membrane systems were investigated representing dilute and concentrated solutions of $C_{60}$ residing either inside or outside the membrane. The concentrated $C_{60}$ molecules in water phase start forming an aggregated cluster. Due to its heavy mass, the cluster tends to adhere on the surface of the bilayer membrane, hindering both translational and rotational diffusion of individual $C_{60}$. On the other hand, once $C_{60}$ molecules accumulate inside the membrane, they are well dispersed in the central region of the bilayer membrane. Because of the homogeneous dispersion of $C_{60}$ inside the membrane, each leaflet is pushed away from the center, making the bilayer membrane thicker. This thickening of the membrane provides more room for both translational and rotational motions of $C_{60}$ inside the membrane compared to that in the water region. As a result, the dynamics of $C_{60}$ inside the membrane becomes faster with increasing its concentration.

Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation (산소/질소 분리를 위한 다층구조 제올라이트 5A를 함유한 탄소분자체 분리막 제조)

  • Li, Wen;Chuah, Chong Yang;Bae, Tae-Hyun
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.260-268
    • /
    • 2020
  • Mixed-matrix carbon molecular sieve membranes containing conventional and hierarchically structured 5A were synthesized for application in oxygen (O2)/nitrogen (N2) separation. In general, incorporating 5A fillers into porous carbon matrices dramatically increased the permeability of the membrane with a marginal decrease in selectivity, resulting in very attractive O2/N2 separation performances. Hierarchical zeolite 5A, which contains both microporous and mesoporous domains, improved the separation performance further, indicating that the mesopores in the zeolite can serve as an additional path for rapid gas diffusion without sacrificing O2/N2 selectivity substantially. This facile strategy successfully and cost-effectively pushed the performance close to the Robeson upper bound. It produced high performance membranes based on Matrimid® 5218 polyimide and zeolite 5A, which are inexpensive commercial products.

Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

  • Choi, Min-Ho;Beom, Won-Jin;Park, Chan-Jin
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.281-288
    • /
    • 2010
  • This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at $75^{\circ}C$ than $25^{\circ}C$. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution.

Technological Trends in Polymer Gas Separation Membrane for Carbon Neutrality (탄소중립을 위한 고분자 기체분리막의 기술 동향)

  • Khalid Muhammad Tayyab;Chul Ho Park
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.172-181
    • /
    • 2024
  • Many countries have passed laws to achieve Nationally Determined Contribution (NDC) which is a climate action plan to reduce greenhouse gas emissions and adapt to climate impacts. Although there are various technologies to achieve NDC targets, membrane technologies pose dramatical attractions for the purification of gaseous greenhouse gases or energy sources. Therefore, this review will provide the technological trends of polymeric membranes among various materials due to the advantages of the feasible fabrication process and easy scale-up.

Pyrolytic Carbon Membranes for Air Separations (공기 분리용 열분해 탄소막)

  • Singh, Anshu;Koros, W.J.
    • Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.15-21
    • /
    • 1997
  • Carbon molecular sieve (CMS) membranes were synthesized by the pyrolysis of polymeric precursors. The CMS materials had oxygen-nitrogen selectivities much higher than those observed for the polymeric precursors. Typically molecular sieving materials have diffusion selectivities much higher than polymeric materials. This has been identified as a result of higher entropic selectivity of the molecular sieving materials. A study of the development of molecular sieving properties as the polymeric precursor is pyrolyzed into a CMS material will offer us an insight into polymeric molecular structures needed for enhanced entropic selectivity membrane materials.

  • PDF

Carbon Molecular Sieve Membranes Dispersed with Nano Particles

  • H.Suda;Ha, K.raya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.183-186
    • /
    • 2004
  • Nano particles-containing CMS membranes were prepared by pyrolysis of polyimides dispersed uniformly with precursors and their gas separation performances were examined, to elucidate the permeation mechanism and to further improve the gas separation performance. Consequently, it was suggested that the separation performance could be controlled by doping nano-particles in the CMS membranes, and that optimization of various factors, such as the size, content, and dispersion state of the nano particles would contribute for further improvement of the gas separation performance.

  • PDF

Recent Progress in Qantum Dots Containing Thin Film Composite Membrane for Water Purification (양자점이 합체된 복합 박막을 이용한 정수의 최근 발전)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.293-306
    • /
    • 2020
  • Increasing harmful effects of climate change, such as its effect on water scarcity, has led to a focus on developing effective water purification methods to obtain pure water. Additionally, rising levels of water pollution is increasing levels of environmental degradation, calling for sources of water treatment to remove contaminants. To purify water, osmotic processes across a semipermeable membrane can take place, and recent studies are showing that incorporating nanoparticles, including carbon quantum dots (CQDs), graphene carbon dots (GQDs), and graphene oxide quantum dots (GOQDs) are making thin film composite (TFC) membranes more effective by increasing water flux while maintaining similar levels of salt rejection, increasing the hydrophilicity of the membrane surface, showing bactericidal properties, exhibiting antifouling properties to prevent accumulation of bacteria or other microorganisms from reducing the effectiveness of the membrane, and more. In the review, the synthesis process, applications, functionality, properties, and the role of several types of quantum dots are discussed in the composite membrane for water purification.