• 제목/요약/키워드: Carbon Fiber Epoxy Composite

검색결과 361건 처리시간 0.021초

SMC 복합재료와 Carbon/Epoxy 복합재료의 파괴인성평가 (The Evaluation of Fracture Toughness of SMC Composite Material and Carbon/Epoxy Composite Material)

  • 최영근;이유태;이태순
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.25-32
    • /
    • 1993
  • In composite materials, the fracture perpendicular to the fiber direction usually shows a non-linear behavior accompannying blunting and plastic deformation around the crack tip. In this study, the fracture thoughness in random short fiber SMC composite material and Carbon/Epoxy composite material is estimated by the A.M.(Area Method) and the G.L.M.(Generalized Locus Method) which can determine a stable total energy release rate(G$_T$) not only in highly elghly elastic material but also in highly non-linear materials.

  • PDF

선삭가공에 있어서 탄소섬유 에폭시 복합재료의 절삭 특성 (Machinability of Carbon Fiber Epoxy Composites in Turning)

  • 김기수;이대길;곽윤근;남궁석
    • 한국정밀공학회지
    • /
    • 제8권1호
    • /
    • pp.63-73
    • /
    • 1991
  • Carbon fiber epoxy composite materials are widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise machining. In this paper, the machinability of the carbon fiber epoxy composite materials in turning was experimentally investigated. The cutting mechanism and the Taylor Tool Wear constants were determined and the surface roughness was measured w.r.t. cutting speeds and feed rates.

  • PDF

에폭시 수지 적용 아라미드 및 탄소섬유 복합재료의 물성연구 (Property Evaluation of Epoxy Resin based Aramid and Carbon Fiber Composite Materials)

  • 서대경;하나라;이장훈;박현규;배진석
    • 한국염색가공학회지
    • /
    • 제27권1호
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, super fiber reinforced composite materials are widely used in many industries due to high mechanical properties. In this study, 2 different types of composite materials were manufactured in order to compare their mechanical properties. Carbon and Aramid fibers were used for reinforcement materials and Bisphenol-A type epoxy resin was for matrix. Two kinds of fiber-reinforced materials were manufactured by RIM(Resin Injection Molding) method. Before manufacturing composite materials, the optimal manufacturing and curing process condition were established and the ratio of reinforcement to epoxy resin was discussed. FT-IR analysis was conducted to clarify the structure of epoxy resin. Thermal and mechanical property test were also carried out. The cross-section of composite materials was observed using a scanning electron microscope(SEM).

압전기법을 이용한 복합재료 손상모니터링의 가능성에 관한 연구 (Feasibility Study of the Damage Monitoring for Composite Materials by the Piezoelectric Method)

  • 황희윤
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.918-923
    • /
    • 2008
  • Since crack detection for laminated composites in-service is effective to improve the structural reliability of laminated composites, it have been tried to detect cracks of laminated composites by various nondestructive methods. An electric potential method is one of the widely used approaches for detection of cracks for carbon fiber composites, since the electric potential method adopts the electric conductive carbon fibers as reinforcements and sensors and the adoption of carbon fibers as sensors does not bring strength reduction induced by embedding sensors into the structures such as optical fibers. However, the application of the electric method is limited only to electrically conductive composite materials. Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints because it can monitor continuously the damage of adhesively bonded structures without producing any defects. Polymeric materials for the matrix of composite materials have piezoelectric characteristics similarly to adhesive materials, and the fracture of composite materials should lead to the fracture of polymeric matrix. Therefore, it seems to be valid that the piezoelectric method can be applied to monitoring the damage of composite materials. In this research, therefore, the feasibility study of the damage monitoring for composite materials by piezoelectric method was conducted. Using carbon fiber epoxy composite and glass fiber composite, charge output signals were measured and analyzed during the static and fatigue tests, and the effect of fiber materials on the damage monitoring of composite materials by the piezoelectric method was investigated.

PEMFC용 탄성 탄소 복합재료 분리판의 기계적 강도 및 전기전도도에 미치는 탄소섬유 필라멘트와 흑연 섬유의 영향 (Effect of Carbon Fiber Filament and Graphite Fiber on the Mechanical Properties and Electrical Conductivity of Elastic Carbon Composite Bipolar Plate for PEMFC)

  • 이재영;이우금;임형렬;정규범;이홍기
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.131-138
    • /
    • 2014
  • Highly conductive bipolar plate for polymer electrolyte membrane fuel cell (PEMFC) was prepared using phenol novolac-type epoxy/graphite powder (GP)/carbon fiber filament (CFF) composite, and a rubber-modified epoxy resin was introduced in order to give elasticity to the bipolar plate graphite fiber (GF) was incorporated in order to improve electrical conductivity. To find out the cure condition of the mixture of novolac-type and rubber-modified epoxies, differential scanning calorimetry (DSC) was carried out and their data were introduced to Kissinger equation. And tensile and flexural tests were carried out using universal testing machine (UTM) and the surface morphology of the fractured specimen and the interfacial bonding between epoxy matrix and CFF or GF were observed by a scanning electron microscopy (SEM).

탄소섬유/Epoxy 샌드위치 복합재판넬의 기계적 취부특성평가 (Properties of Mechanical Joint by Carbon Fiber/Epoxy Sandwich Composite Panels)

  • 오경원;이상진;정종철;조세현;김정석
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.121-124
    • /
    • 2005
  • This paper was about experimental test properties by mechnical joint of CF1263/Epoxy Al honeycomb panels. In case of mechanical joint using screw, nut shall be secured over than minimize third screw pitch. In case of insert backsheet for increase of joint force, increase weight for assemble by screw pitch. In case of insert backsheet with CF1263/Epoxy, predominant save weight and minimazer of displacement by tensile weight moreover predominant strength. In case of mechanical joint by rivet, rivet of Monobolt has over-hole in hole of CF1263/Epoxy but rivet of PROTRUDING has predominant of mechanical joint.

  • PDF

고분자전해질 연료전지용 새로운 타입의 복합재료 분리판의 특성연구 (A Study on the Characteristics of New Type of Composite Bipolar Plate for the PEM Fuel Cell)

  • 김종완;이진선;선경복;이중희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.180-183
    • /
    • 2009
  • Composite bipolar plates offer several advantages of low cost, light weight, and ease of manufacturing compared to traditional graphite plate. However, it is difficult to achieve both high electrical conductivity and high flexural strength. In this study, the hybrid carbons filled epoxy composite bipolar plates were fabricated to test electrical conductivity and flexural properties. Graphite powders were used as the main conducting filler and continuous carbon fiber fabrics were inserted to improve the mechanical properties of the composite. This hybrid composite showed improved in-plane electrical conductivity and flexural property. The moldability of the hybrid composite was also improved comparing to the continuous prepreg composite. This study suggested that the continuous carbon fiber inserted graphite/epoxy composites can be a potential candidate material to overcome the disadvantages of conventional graphite composite or continuous prepreg composite bipolar plates.

  • PDF

Electro-Micromechanical Technique을 이용한 각의 변화에 따른 Carbon과 SiC Fiber/Epoxy Composites의 계면감지능 및 평가 (Interfacial Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Different Embedding Angle using Electro-Micromechanical Technique)

  • Lee, Sang-Il;Kong, Jin-Woo;Park, Joung-Man
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.199-202
    • /
    • 2002
  • Interfacial properties and electrical sensing for fiber fracture in carbon and SiC fibers/epoxy composites were investigated by the electrical resistance measurement and fragmentation test. As fiber-embedded angle increased, interfacial shear strength (IFSS) of two-type fiber composites decreased, and the elapsed time was long to the infinity in electrical resistivity. The initial slope of electrical resistivity increased rapidly to the infinity at higher angle, whereas electrical resistivity increased gradually at small angle. Furthermore, both fiber composites with small embedded angle showed a fully-developed stress whitening pattern, whereas both composites with higher embedded angle exhibited a less developed stress whitening pattern. As embedded angle decreased, the gap between the fragments increased and the debonded length was wider for both fiber composites. Electro-micromechanical technique can be a feasible nondestructive evaluation to measure interfacial sensing properties depending on the fiber-embedded angle in conductive fiber reinforced composites.

  • PDF

미시역학적 파손 기준을 이용한 탄소섬유/에폭시 복합재 링크의 안전성 평가 (Safety Evaluation of Carbon Fiber/Epoxy Composite Link Using Micromechanics of Failure Criterion)

  • 차재호;윤성호
    • Composites Research
    • /
    • 제36권3호
    • /
    • pp.154-161
    • /
    • 2023
  • 본 연구에서는 경량화를 위해 금속 링크를 탄소섬유/에폭시 복합재 링크로 대체하고자 파손 기준을 이용하여 복합재 링크가 주어진 하중 조건을 견딜 수 있는지를 평가하였다. 복합재의 파손 양상을 예측하기 위해 MMF 기준을 이용하였고, 기계적 시험을 수행하여 MMF의 기준 강도 파라미터를 구하였다. 연구결과 링크의 구멍 주위에서 응력집중이 발생하였고, 특히 굽힘 하중을 받을 때 링크 끝단과 구멍 주위에서 취약함이 드러났다. 파손 지수로부터 파손 양상을 예측하였고 매트릭스 인장 파손이 링크 끝단에서, 그리고 구멍 주위에서는 섬유의 압축 파손이 예측되었다. 본 연구를 통해 확보된 방법과 결과는 경량화를 위해 금속 부품을 탄소섬유/에폭시 복합재로 대체할 때 특정 하중 조건 하에서 복합재의 안전성을 평가하는 유용한 지침으로 활용할 수 있을 것이다.

복합재료의 계면 전단강도를 평가하기 위한 새로운 반구형 미소접합 시험편 (A novel hemispherical microbond specimen for evaluating the interfacial shear strength of single fiber composite)

  • 박주언;최낙삼
    • Composites Research
    • /
    • 제21권2호
    • /
    • pp.25-30
    • /
    • 2008
  • A hemispherical microbond specimen adhered onto single carbon fiber has been proposed for evaluating the interfacial shear strength between epoxy and carbon fiber. Hemispherical microbond specimens showed low interfacial shear strength data and its small standard deviation as compared with the droplet one, which seemed to be caused by the reduction of the meniscus effects and of the stress concentration in the region contacting with the tip of pin hole. In comparison with the droplet specimen the hemispherical specimen showed the shear stress distribution similar to the cylindrical one in that low stress concentration arose around the contacting region. Average interfacial shear strength obtained by the hemispherical ones represented a good correlation with the hardness of the epoxy matrix.