• Title/Summary/Keyword: Carbon Emissions

Search Result 1,331, Processing Time 0.034 seconds

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy

Sources of Carbonaceous Materials in the Airborne Particulate Matter of Dhaka

  • Begum, Bilkis A.;Hossain, Anwar;Saroar, Golam;Biswas, Swapan K.;Nasiruddin, Md.;Nahar, Nurun;Chowdury, Zohir;Hopke, Philip K.
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.237-246
    • /
    • 2011
  • To explore the sources of carbonaceous material in the airborne particulate matter (PM), comprehensive PM sampling was performed (3 to 14 January 2010) at a traffic hot spot site (HS), Farm Gate, Dhaka using several samplers: AirMetrics MiniVol (for $PM_{10}$ and $PM_{2.5}$) and MOUDI (for size fractionated submicron PM). Long-term PM data (April 2000 to March 2006 and April 2000 to March 2010 in two size fractions ($PM_{2.2}$ and $PM_{2.2-10}$) obtained from two air quality-monitoring stations, one at Farm Gate (HS) and another at a semi-residential (SR) area (Atomic Energy Centre, Dhaka Campus, (AECD)), respectively were also analyzed. The long-term PM trend shows that fine particulate matter concentrations have decreased over time as a result of government policy interventions even with increasing vehicles on the road. The ratio of $PM_{2.5}/PM_{10}$ showed that the average $PM_{2.5}$ mass was about 78% of the $PM_{10}$ mass. It was also found that about 63% of $PM_{2.5}$ mass is $PM_1$. The total contribution of BC to $PM_{2.5}$ is about 16% and showed a decreasing trend over the years. It was observed that $PM_1$ fractions contained the major amount of carbonaceous materials, which mainly originated from high temperature combustion process in the $PM_{2.5}$. From the IMPROVE TOR protocol carbon fraction analysis, it was observed that emissions from gasoline vehicles contributed to $PM_1$ given the high abundance of EC1 and OC2 and the contribution of diesel to $PM_1$ is minimal as indicated by the low abundance of OC1 and EC2. Source apportionment results also show that vehicular exhaust is the largest contributors to PM in Dhaka. There is also transported $PM_{2.2}$from regional sources. With the increasing economic activities and recent GDP growth, the number of vehicles and brick kilns has significantly increased in and around Dhaka. Further action will be required to further reduce PM-related air pollution in Dhaka.

Experimental Study on the Toxicity Characteristics of Non-Class 1E Cables according to Accelerated Deterioration (가속열화에 따른 비안전등급 케이블의 독성특성에 관한 실험적 연구)

  • Jang, Eun-Hui;Kim, Min-Ho;Lee, Min Chul;Lee, Sang-Kyu;Moon, Young-Seob
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.105-113
    • /
    • 2019
  • This study investigates the toxicity characteristics of two Non-Class 1E Cables (For security reasons, we refer to company A and company B) used in nuclear power plants according to the accelerated deterioration period. In accordance with NES 713 test equipment and standards, tests were carried out on non-aged cables and the cables subjected to 20- and 40-year-accelerated-deterioration; each of the cables was further classified into sheath and insulation. The test results showed that the toxicity indices of 20- and 40-year-accelerated-aged cables were higher than those for the non-aged cables, and 20-year-aged cables of both A and B companies showed the highest toxicity indices. This is attributed to the extensive emissions of carbon monoxide and halide gases such as hydrogen chloride and hydrogen bromide. Furthermore, to analyze the toxicity indices of sheath and insulation in detail, the US Department of Defense standard (MIL-DTL) was applied to determine whether the Toxicity index (T.I.) allowance was exceeded, and the results showed that the insulating materials emitted considerably more than the allowable limit.

Normal Operation Characteristics of 30kW Scale CVCF Inverter-Based Micro-grid System (30kW급 CVCF 인버터 기반의 Micro-grid의 정상상태 운용특성에 관한 연구)

  • Ferreira, Marito;Lee, Hu-Dong;Tae, Dong-Hyun;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.662-671
    • /
    • 2020
  • Recently, for the purposes of reducing carbon dioxide(CO2) emissions in the island area, countermeasures to decrease the operation rate of diesel generator(DG) and to increase one of renewable energy sources(RES) is being studied. In particular, the demonstration and installation of stand-alone micro-grid(MG) system which is composed of DG, RES and energy storage system(ESS) has been implemented in some island areas such as Gapa-do, Gasa-do and Ulleung-do island. However, many power quality(PQ) problems may be occurred due to an intermittent output of RES including photovoltaic(PV) system and wind power(WP) system in a normal operating of constant voltage & constant frequency(CVCF) inverter-based MG system. Therefore, this paper presents a modeling of the 30kW scale MG system using PSCAD/EMTDC, and also implements a 30kW scale CVCF inverter-based MG system as test devices to analyze normal operating characteristics of MG system. From the simulation and test results, it is confirmed that the proposed methods are useful and practical tools to improve PQ problems such as under-voltage, over-voltage and unbalanced load in CVCF inverter-based MG system.

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.

Intelligent Railway Detection Algorithm Fusing Image Processing and Deep Learning for the Prevent of Unusual Events (철도 궤도의 이상상황 예방을 위한 영상처리와 딥러닝을 융합한 지능형 철도 레일 탐지 알고리즘)

  • Jung, Ju-ho;Kim, Da-hyeon;Kim, Chul-su;Oh, Ryum-duck;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.109-116
    • /
    • 2020
  • With the advent of high-speed railways, railways are one of the most frequently used means of transportation at home and abroad. In addition, in terms of environment, carbon dioxide emissions are lower and energy efficiency is higher than other transportation. As the interest in railways increases, the issue related to railway safety is one of the important concerns. Among them, visual abnormalities occur when various obstacles such as animals and people suddenly appear in front of the railroad. To prevent these accidents, detecting rail tracks is one of the areas that must basically be detected. Images can be collected through cameras installed on railways, and the method of detecting railway rails has a traditional method and a method using deep learning algorithm. The traditional method is difficult to detect accurately due to the various noise around the rail, and using the deep learning algorithm, it can detect accurately, and it combines the two algorithms to detect the exact rail. The proposed algorithm determines the accuracy of railway rail detection based on the data collected.

Evaluating the Applicability of the DNDC Model for Estimation of CO2 Emissions from the Paddy Field in Korea (전국 논 토양 이산화탄소 배출량 추정을 위한 DNDC 모형의 국내 적용성 평가)

  • Hwang, Wonjae;Kim, Yong-Seong;Min, Hyungi;Kim, Jeong-Gyu;Cho, Kijong;Hyun, Seunghun
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • Greenhouse gas emission from agricultural land is recognized as an important factor influencing climatic change. In this study, the national $CO_2$ emission was estimated for paddy soils, using soil GHG emission model (DNDC) with $1km^2$ scale. To evaluate the applicability of the model in Korea, verification was carried out based on field measurement data using a closed chamber. The total national $CO_2$ emission in 2015 was estimated at $5,314kt\;CO_2-eq$, with the emission per unit area ranging from $2.2{\sim}10.0t\;CO_2-eq\;ha^{-1}$. Geographically, the emission of Jeju province was particularly high, and the emission from the southern region was generally high. The result of the model verification analysis with the field data collected in this study (n=16) indicates that the relation between the field measurement and the model prediction was statistically similar (RMSE=22.2, ME=0.28, and $r^2=0.53$). More field measurements under various climate conditions, and subsequent model verification with extended data sets, are further required.

An Experimental Study of the Fuel Additive to Improve the Performance of a 2-Stroke Large Diesel Engine (2행정 대형 디젤엔진의 성능향상을 위한 연료첨가제의 실험적 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.620-625
    • /
    • 2015
  • In an effort to reduce the onset of global warming, the International Maritime Organization Marine Environment Protection Committee (IMO MEPC) proposed the reduction in ship speeds as a way of lowering the proportion of carbon dioxide ($CO_2$) in the Green House Gas emissions from ships. To minimize fuel costs, shipping companies have already been performing slow steaming for their own fleets. Specifically, the slow steaming approach has been adopted for most ocean-going container lines. In addition, because of the increased marine fuel cost that is required to enable increased capacity, there is an urgent need for more advanced fuel-saving technologies. Therefore, in this present study, we propose a fuel-cost reduction method that can improve the performance of diesel engines. We introduce a predetermined amount (0.025% of the amount of fuel used) of fuel additive (oil-soluble calcium-based organometallic compound). For improved experimental accuracy, as the test subjects, we utilize a large two-stroke diesel engine installed in land plants. The loads of the test engine were classified as low, medium, and high (50, 75, and 100%, respectively). We compare the engine performance parameters (power output, fuel consumption rate, p-max, and exhaust temperature) before and after the addition of fuel additives. Our experimental results, confirmed that we can realize fuel-cost savings of at least 2% by adding the fuel additive in low load conditions (50%). Likewise, the maximum combustion pressure was found to have increased. On the other hand, we observed that there was a reduction in the exhaust temperature.

Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field

  • Park, Jun-Hong;Sonn, Yeon-Kyu;Kong, Myung-Suk;Zhang, Yong-Seon;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Rice cultivation in paddy field affects the global balance of methane ($CH_4$) as a key greenhouse gas. To evaluate a potential use of by-product gypsum fertilizer (BGF) in reducing $CH_4$ emission from paddy soil, $CH_4$ fluxes from a paddy soil applied with BGF different levels (0, 2, 4 and $8Mg\;ha^{-1}$) were investigated by closed-chamber method during rice cultivation period. $CH_4$ flux significantly decreased (p<0.05) with increasing level of BGF application. $8Mg\;ha^{-1}$ of BGF addition in soil reduced $CH_4$ flux by 60.6% compared to control. Decreased soil redox potential (Eh) resulted in increasing $CH_4$ emission through a $CO_2$ reduction reaction. The concentrations of dissolved calcium (Ca) and sulfate ion (${SO_4}^{2-}$) in soil pore water were significantly increased as the application rate of BGF increased and showed negatively correlations with $CH_4$ flux. Decreased $CH_4$ flux with BGF application implied that ${SO_4}^{2-}$ ion led to decreases in electron availability for methanogen and precipitation reaction of Ca ion with inorganic carbon including carbonate and bicarbonate as a source of $CH_4$ formation under anoxic condition. BGF application also increased rice grain yield by 16% at $8Mg\;ha^{-1}$ of BGF addition. Therefore, our results suggest that BGF application can be a good soil management practice to reduce $CH_4$ emission from paddy soil and to increase rice yield.

The Technology Development Trends of Supercritical CO2 Power Generation (초임계 CO2 발전 기술개발 동향)

  • Kim, Beom-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.531-536
    • /
    • 2016
  • The worldwide research and development for high-efficiency power generation system is progressing steadily because of the growing demand for reducing greenhouse gas emissions. Many countries have spurred the research and development of supercritical $CO_2$ power generation technology since 2000 because it has the advantage of compactness, efficiency, and diversity. Supercritical $CO_2$ power generation system can be classified into an indirect heating type and a direct heating type. As of now, most studies have concentrated on the development of indirect type supercritical $CO_2$ power generation system. In the United States, NREL(National Renewable Energy Lab.) is developing supercritical $CO_2$ power generation system for Concentrating Solar Power. In addition, U.S. DOE(Department of Energy) also plans to start investing in the development of the supercritical $CO_2$ power generation system for coal-fired thermal power plant this year. GE is developing not only 10MW supercritical $CO_2$ power generation turbomachinery but also the conceptual design of 50MW and 450MW supercritical $CO_2$ power generation turbomachinery. In Korea, the Korean Atomic Energy Research Institute has constructed the supercritical $CO_2$ power generation test facility. Moreover, KEPRI(Korea Electric Power Research Institute) is developing a 2MW-class supercritical $CO_2$ power generation system using diesel and gas engine waste heat with Hyundai Heavy Industries.