• Title/Summary/Keyword: Carbon Emission Model

Search Result 256, Processing Time 0.025 seconds

Carbon Reduction Investments under Direct Shipment Strategy

  • Min, Daiki
    • Management Science and Financial Engineering
    • /
    • v.21 no.1
    • /
    • pp.25-29
    • /
    • 2015
  • Recently much research efforts have focused on how to manage carbon emissions in logistics operations. This paper formulates a model to determine an optimal shipment size with aims to minimize the total cost consisting not only of inventory and transportation costs but also cost for carbon emissions. Unlike the literature assuming carbon emission factors as a given condition, we consider the emission factors as decision variables. It is allowed to make an investment in improving carbon emission factors. The optimal investment decision is shown to be of a threshold type with respect to unit investment costs. Moreover, the findings in this work provide insights on the various elements of the investment decision and their impacts.

Investment Decisions for Clean Development Mechanism under Uncertain Energy Policies using Real Option

  • Taeil Park;Changyoon Kim;Hyoungkwan Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.107-110
    • /
    • 2013
  • Recently, Korea parliament legislated the Low Carbon Green Growth Act (April, 2012) and approved a bill (May, 2012) to start carbon emission trading system in 2015. It means that for the first time, government would regulate the amounts of carbon emission in private entities, and private entities should attain predefined emission reduction goals by implementing clean development mechanism (CDM) project or buy the Certified Emission Reductions (CERs) from the trading market to avoid penalty. Under these circumstances, it is not easy for them to determine when or how to implement the CDM project because the governmental energy policies about the level of governmental subsidies, periods for free emission allocation, etc. are still under discussion and the future price of the CERs is quite uncertain. Thus, this study presents a real-option based model to assess the financial viability of the CDM project which switches bunker-C oil to liquefied natural gas (LNG). The proposed model is expected to assist private entities in establishing the investment strategy for CDM project under uncertain government energy policies.

  • PDF

The Prediction of Emission Concentrations in SI Engine Considering Temperature Gradient in Combustion Chamber (전기점화기관의 연소실 온도구배를 고려한 배출물 농도예측)

  • 신동신;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.3
    • /
    • pp.83-93
    • /
    • 1985
  • The prediction of emission concentrations in a 4cycle spark ignition engine was made by considering nonuniform model with thermodynamics, chemical equilibrium and kinetic mechanism of nitric oxide. Calculation of this model shows that a temperature difference of the order of 500K can be established across he cylinder. Results of the kinetic calculation of nitric oxide show that the temperature gradient across the cylinder has a profound effect on the nitric oxide formation. The predicted values for nitric oxide, carbon dioxide and carbon monoxide agree with measured ones for a variety of equivalence ratio.

  • PDF

Estimation of Carbon Stock by Development of Stem Taper Equation and Carbon Emission Factors for Quercus serrata (수간곡선식 개발과 국가탄소배출계수를 이용한 졸참나무의 탄소저장량 추정)

  • Kang, Jin-Taek;Son, Yeong-Mo;Jeon, Ju-Hyeon;Yoo, Byung-Oh
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • This study was conducted to estimate carbon stocks of Quercus serrata with drawing volume of trees in each tree height and DBH applying the suitable stem taper equation and tree specific carbon emission factors, using collected growth data from all over the country. Information on distribution area, tree number per hectare, tree volume and volume stocks were obtained from the $5^{th}$ National Forest Inventory (2006~2010), and method provided in IPCC GPG was applied to estimate carbon storage and removals. Performance in predicting stem diameter at a specific point along a stem in Quercus serrata by applying Kozak's model,$d=a_1DBH^{a_2}a_3^{DBH}X^{b_1Z^2+b_2ln(Z+0.001)+b_3{\sqrt{Z}}+b_4e^Z+b_5({\frac{DBH}{H}})}$, which is well known equation in stem taper estimation, was evaluated with validations statistics, Fitness Index, Bias and Standard Error of Bias. Consequently, Kozak's model turned out to be suitable in all validations statistics. Stem volume tables of Quercus serrata were derived by applying Kozak's model and carbon stock tables in each tree height and DBH were developed with country-specific carbon emission factors ($WD=0.65t/m^3$, BEF=1.55, R=0.43) of Quercus serrata. As a result of carbon stock analysis by age class in Quercus serrata, carbon stocks of IV age class (11,358 ha, 36.5%) and V age class (10,432; 33.5%) which take up the largest area in distribution of age class were 957,000 tC and 1,312,000 tC. Total carbon stocks of Quercus serrata were 3,191,000 tC which is 3% compared with total percentage of broad-leaved forest and carbon sequestration per hectare(ha) was 3.8 tC/ha/yr, $13.9tCO_2/ha/yr$, respectively.

Data Envelopment Analysis for Container Terminals Considering an Undesirable Output - Focus on Busan Port & Kwangyang Port (유해산출물을 고려한 국내 컨테이너 터미널 효율성 분석)

  • Shin, Chang-Hoon;Jeong, Dong-Hun
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.195-201
    • /
    • 2013
  • Recently according to increase of enlarged scale ports in conformity with increase in over size vessels and container handling service, pollutants generated from ports are increasing. In advanced countries, reduction in carbon dioxide emission assigned to them has been implemented according to the Climate Change Convention and Kyoto Protocol from 2008 to 2012 in order to lessen carbon dioxide emission. Henceforth increase in discussion on the measure of constructing Green Port and low-carbon port is expected in our nation's field of port as well, it is considered that the effort in reduction with regard to undesirable output which causes environmental problem of analysis target during measuring effectiveness. Therefore, in this study, effectiveness was estimated through directional technology distance function considering undesirable output differently from effectiveness analysis of existing container terminal, and then performed comparative analysis with the result analyzed with BCC output-oriented model. As the result of analysis, in 2007 DMU3 and DMU5, and in 2010 DMU2 and DMU4 appeared to be efficient terminals in BCC output oriented model, and in directional technology distance function model, DMU1, DMU3 in 2007, DMU3, DMU5 in 2008, DMU7 in 2009, and DMU2, DMU5 in 2010 appeared to be efficient terminals.

Implementing Activity-based LCA Model for Carbon Dioxide Emission Analysis and Allocation of Environment Cost (세부 공정별 CO2 배출 분석 및 환경비용 원가배분을 위한 Activity-based LCA 모델의 도입 - 커튼월 공사를 중심으로 -)

  • Lim, Ji-Youn;Yi, June-Seong;Shin, Seung-Woo;Son, Jeong-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.78-88
    • /
    • 2012
  • As worldwide efforts to reduce global warming gases, the construction Industry is endeavoring to diminish carbon dioxides emissions. Especially, by introducing the LCA methodology to the industry, A variety of related studies to measure the emission of carbon dioxides have been conducted. However, when the conventional LCA methodology is applied to the construction projects, some limitations have been reported. To overcome the restrictions derived from the industry characteristics, this research suggested the Activity-based LCA model by applying the Activity-based Costing (ABC), which breaks down the whole life cycles into more detailed stages. By implementing the newly developed model, forecasting accuracy of $CO_2$ emission was elevated, and the critical control points on carbon dioxides were established. Through the case study of aluminium curtain-wall system, this research verified the usefulness of the Activity-based LCA.

Design of a Logistics Decision Support System for Transportation Mode Selection considering Carbon Emission Cost (탄소배출비용을 고려한 물류의 최적 운송수단 의사결정 시스템 설계)

  • Song, Byung-Jun;Koo, Je-Kwon;Song, Sang-Hwa;Lee, Jong-Yun
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.371-384
    • /
    • 2011
  • This paper considers logistics decision support system which deals with transportation mode selection considering transportation and carbon emission cost. Transportation and carbon emission costs vary with the choice of transportation modes and to become competitive companies need to find proper transportation modes for their logistics services. However, due to the restricted capacity of transportation modes, it is difficult to balance transportation and carbon emission costs when designing logistics network including transportation mode choice for each service. Therefore this paper aims to analyze the trade-off relationship between transportation and carbon emission cost in mode selection of intermodal transportation and to provide optimal green logistics strategy. In this paper, the logistics decision support system is designed based on mixed integer programming model. To understand the trade-off relationship of transportation and carbon emission cost, the system is tested with various scenarios including transportation of containers between Seoul and Busan. The analysis results show that, even though sea transportation combined with trucking is competitive in carbon emission per unit distance travelled, the total cost of carbon emission and transportation for the sea transportation may not have competitive advantage over other transportation modes including rail and truck transportation modes. The sea-based intermodal logistics service may induce detours which have negative impacts on the overall carbon emission. The proposed logistics decision support system is expected to play key role in green logistics and supply chain management.

Bike Transportation Activation Policy through Carbon Emission Trading (탄소배출권 거래를 고려한 자전거 활성화 정책)

  • Choi, Jae Soon
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.1-10
    • /
    • 2016
  • OBJECTIVES : Currently, the market for carbon emissions trading has been increasing. In Korea, it is known that traffic mode rate in bike transportation is low. However, if bike transportation system is encouraged and the traffic mode rate is increased, it would be possible to reduce carbon emissions through the trading market. In this study, a practical policy to activate the bike transportation system in Korea will be proposed and verified. METHODS : Past studies regarding bike transportation system in international and domestic metropolitan cities were analyzed. Moreover, detailed reviews on recent carbon emissions trading market were performed. In particular, SWOT analysis on the bike transportation system in Korea and policy topology analysis were conducted. RESULTS : Based on the literature reviews and SWOT analysis, a new bike transportation policy was proposed. Several actual plans to adopt in Korea were proposed. In addition, a new bike transportation policy was analyzed using policy typology model, and a business model related to the cost of implementing the system and CERs were also proposed. CONCLUSIONS : It is concluded that the proposed bike transportation activation policy and several practical plans to connect CERs and a business model including bus, subway, T-money and bike riders to give some incentive were effective and reasonable. It is desired that this study will help Korea to get CERs through bike transportation activation in the future.

System dynamic modeling and scenario simulation on Beijing industrial carbon emissions

  • Wen, Lei;Bai, Lu;Zhang, Ernv
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.355-364
    • /
    • 2016
  • Beijing, as a cradle of modern industry and the third largest metropolitan area in China, faces more responsibilities to adjust industrial structure and mitigate carbon emissions. The purpose of this study is aimed at predicting and comparing industrial carbon emissions of Beijing in ten scenarios under different policy focus, and then providing emission-cutting recommendations. In views of various scenarios issues, system dynamics has been applied to predict and simulate. To begin with, the model has been established following the step of causal loop diagram and stock flow diagram. This paper decomposes scenarios factors into energy structure, high energy consumption enterprises and growth rate of industrial output. The prediction and scenario simulation results shows that energy structure, carbon intensity and heavy energy consumption enterprises are key factors, and multiple factors has more significant impact on industrial carbon emissions. Hence, some recommendations about low-carbon mode of Beijing industrial carbon emission have been proposed according to simulation results.

Global Carbon Budget and Ocean Buffering against Rising Atmospheric CO2 Concentration

  • Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.773-781
    • /
    • 2002
  • The natural carbon cycle has been perturbed since the mid-19th century by anthropogenic CO$_2$emissions from fossil fuel combustion and deforestation due to population growth and industrialization. The current study simulated the global carbon cycle for the past 42 years using an eight-box carbon cycle model. The results showed that since the terrestrial biospheric carbon sink was roughly offset by the deforestation source, the fossil fuel emission source was partitioned between the atmospheric and oceanic sinks. However, the partitioning ratio between the atmosphere and the ocean exhibited a change, that is, the carbon accumulation rate was faster in the atmosphere than in the ocean, due to a decrease in the so-called ocean buffering capacity. It was found that the ocean buffering capacity to take up excess CO$_2$decreased by 50% in terms of the buffer factor over the past 42 years. Accordingly, these results indicate that if the current CO$_2$emission trend continues, the future rate of increase in the atmospheric CO$_2$concentration will accelerate.