• 제목/요약/키워드: Carbon Emission Factor

검색결과 179건 처리시간 0.03초

Artificial intelligence (AI) based analysis for global warming mitigations of non-carbon emitted nuclear energy productions

  • Tae Ho Woo
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4282-4286
    • /
    • 2023
  • Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.

Surface structure modification of vertically-aligned carbon nanotubes and their characterization of field emission property

  • ;정구환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.159-159
    • /
    • 2016
  • Vertically-aligned carbon nanotubes (VCNT) have attracted much attention due to their unique structural, mechanical and electronic properties, and possess many advantages for a wide range of multifunctional applications such as field emission displays, heat dissipation and potential energy conversion devices. Surface modification of the VCNT plays a fundamental role to meet specific demands for the applications and control their surface property. Recent studies have been focused on the improvement of the electron emission property and the structural modification of CNTs to enable the mass fabrication, since the VCNT considered as an ideal candidate for various field emission applications such as lamps and flat panel display devices, X-ray tubes, vacuum gauges, and microwave amplifiers. Here, we investigate the effect of surface morphology of the VCNT by water vapor exposure and coating materials on field emission property. VCNT with various height were prepared by thermal chemical vapor deposition: short-length around $200{\mu}m$, medium-length around $500{\mu}m$, and long-length around 1 mm. The surface morphology is modified by water vapor exposure by adjusting exposure time and temperature with ranges from 2 to 10 min and from 60 to 120oC, respectively. Thin films of SiO2 and W are coated on the structure-modified VCNT to confirm the effect of coated materials on field emission properties. As a result, the surface morphology of VCNT dramatically changes with increasing temperature and exposure time. Especially, the shorter VCNT change their surface morphology most rapidly. The difference of field emission property depending on the coating materials is discussed from the point of work function and field concentration factor based on Fowler-Nordheim tunneling.

  • PDF

Fabrication of carbon nanotube fibers with nanoscale tips and their field emission properties

  • Shin, Dong-Hoon;Song, Ye-Nan;Sun, Yu-Ning;Shin, Ji-Hong;Lee, Cheol-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.468-468
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been considered as one of the promising candidate for next-generation field emitters because of their unique properties, such as high field enhancement factor, good mechanical strength, and excellent chemical stability. So far, a lot of researchers have been interested in field emission properties of CNT itself. However, it is necessary to study proper field emitter shapes, as well as the fundamental properties of CNTs, to apply CNTs to real devices. For example, specific applications, such as x-ray sources, e-beam sources, and microwave amplifiers, need to get a focused electron beam from the field emitters. If we use planar-typed CNT emitters, it will need several focal lenses to reduce a size of electron beam. On the other hand, the point-typed CNT emitters can be an effective way to get a focused electron beam using a simple technique. Here, we introduce a fabrication of CNT fibers with nanoscale point tips which can be used as a point-typed emitter. The emitter made by the CNT fibers showed very low turn-on electric field, high current density, and large enhancement factor. In addition, it showed stable emission current during long operation period. The high performance of CNT point emitter indicated the potential e-beam source candidate for the applications requiring small electron beam size.

  • PDF

HCNG 버스의 연비와 CO2 배출특성 (Fuel Consumption and CO2 Characteristics of HCNG Bus)

  • 한정옥;김용철;이영철
    • 한국가스학회지
    • /
    • 제21권2호
    • /
    • pp.20-25
    • /
    • 2017
  • 압축 천연가스에 수소를 혼합한 HCNG 연료를 사용하는 HCNG 버스에 대해 WHVC 차량시험 결과를 토대로 연료 경제성 및 $CO_2$ 배출특성을 분석하였다. 동급 CNG 버스 및 디젤버스 시험결과와 비교하여 HCNG 버스의 연비 개선효과와 $CO_2$ 저감효과를 고찰하였다. $CO_2$ 배출특성은 탄소배출계수에 따른 연료효과와 연비에 의한 효과로 분석하였다. 분석결과 HCNG 버스는 CNG 버스 보다 연비는 11.5% 개선되었고 디젤버스와는 동등수준을 보이는 것으로 나타났다. 또한 $CO_2$ 배출 특성으로 HCNG 버스는 CNG 버스에 비해 20.4% 개선효과가 있고 디젤버스에 비해 34.5% 향상되는 것으로 분석되었다. 이산화탄소 배출특성은 연료성분에 따른 탄소배출계수와 엔진성능에 따른 연비에 영향을 받는 것으로 귀결되었다.

고속철도는 고속도로에 비하여 저탄소 친환경적인가? (Does High-Speed Rail Have Superiority over Motorway in Terms of CO2 Emission?)

  • 강태석;장현호
    • 한국도로학회논문집
    • /
    • 제18권5호
    • /
    • pp.83-93
    • /
    • 2016
  • PURPOSES : The aim of this article is to compare and identify eco-friendly competitiveness between (regional) motorway and high-speed rail(HSR) from the perspective of $CO_2$ emission in the Republic of Korea. METHODS : In order for an analysis of low-carbon competitiveness between the two modes, $CO_2e$ emission, $CO_2eppk$ (equivalent $CO_2$ gram per passenger kilometer), is employed as a comparison index. As for HSR, the index is calculated based on the passenger transport data and the gross of $CO_2e$ produced by Kyungbu high-speed line in 2013. Additionally, the gross of $CO_2e$ is computed by the greenhouse gas emission factors of domestic electricity generation mix. Regarding the index of motorway, it is directly calculated using both the official $CO_2e$ emission factor and the passenger-car occupancy of motorway. RESULTS : The results revealed, in the case of inter-regional transport, that the $CO_2e$ emission of displacement-based cars is 54.9% less than that of HSR, as the domestic electric power systems heavily relies on the thermal power plants over 66%. Note that internal combustion engines commonly used for vehicles are more energy-efficient than steam-driven turbines usually utilized for thermal power generation. CONCLUSIONS : It can be seen, at the very least in our study, that HSR has no superiority over motorway in the case of $CO_2e$ emission under the situations of domestic electricity generation mix. In addition, advanced eco-friendly vehicles have strong advantages over HSR. Therefore, all-out efforts should be made to develop and harvest renewable energy sources in order to achieve low-carbon HSR, sparing fossil fuels.

가구 탄소모니터링 시스템에 의한 탄소배출특성 - 세종시 첫마을을 대상으로 - (Households' Characteristics in Energy Consumption Data from Carbon Emission Monitoring System (CEMS) in Sejong City, Korea)

  • 임윤택;이상호
    • KIEAE Journal
    • /
    • 제13권6호
    • /
    • pp.55-65
    • /
    • 2013
  • Korean Government has developed Sejong City as a new administration city. This city of future was planned and designed toward one of the most eco-friendly city on the basis of ICTs. To attain this object, a carbon emission monitoring system (CEMS) was designed and installed as a part of u-city service which provides various information anytime and anywhere to enrich the people's quality of life. In this paper, at first, the structure and functions of CEMS are introduced. This system is consist of 5 parts - data collection from user and linked public DBs, transforming data into meaningful information for the policy makers, system-user interfacing via statistical tables and graphs, and system maintenance. This system can be operated by the citizen participation through whole the process. With the help of GIS map and graphic interface, statistics of monitored data for both citizen and decision maker provided and after feed-back, they have affected on the behaviour of citizen's energy consumption and related policy as well. By the CEMS, energy consumption data of 124 agreed households were collected during 9 months in 2012. Electricity, gas and water consumption were remote-metered automatically by the system and analysed. This showed that more than 85% of CO2 emission is rely on electricity usage. Furthermore, number of family members and size of house influences on the emission of CO2 by each household together with the life-style of the occupants. Electricity and water consumption showed the seasonal factor while gas consumption represents the number of family members. Even this paper has limitations caused by 9 months of data collection, it shows the policy directions to reduce the emission of CO2 focusing on the house size and number of family members of each households. With the result of this research, life-style of the generation of dwellers should be investigated and the CO2 emission characteristics of other housing type as well for the data building for future policy making.

GIS를 이용한 지하광산 디젤 차량의 운반작업 시 탄소배출량 산정 (Calculation of a Diesel Vehicle's Carbon Dioxide Emissions during Haulage Operations in an Underground Mine using GIS)

  • 박보영;박세범;최요순;박한수
    • 터널과지하공간
    • /
    • 제25권4호
    • /
    • pp.373-382
    • /
    • 2015
  • 본 연구에서는 지리정보시스템(GIS)을 이용하여 지하광산 현장에서 운영되는 디젤 차량의 탄소배출량을 정량적으로 산정할 수 있는 방법을 제시하였다. 국내 지하 석회석 광산 한 곳을 연구지역으로 선정하였고, 연구 지역의 운반도로를 3차원 벡터 네트워크 형식으로 표현하여 GIS 데이터베이스를 구축하였다. 탄소배출계수의 계산을 위해 운반도로의 각 구간별로 대형 디젤 차량인 덤프트럭의 이동속도를 측정하였다. 운반도로 각 구간별로 계산된 탄소배출계수와 GIS 기반의 최적 경로분석을 통해 결정된 트럭의 운반거리를 고려하여 운반작업과 관련한 디젤 차량의 탄소배출량을 정량적으로 산정할 수 있었다. 광업 분야에서 디젤 차량이 광범위하게 활용되고 있으므로, 본 연구에서 제시한 방법은 광산 현장의 탄소배출량 산정을 위해 사용될 수 있으며 추가적인 연구를 통해 보다 개선될 수 있을 것이다.

국내 무연탄 화력발전소의 온실가스 배출계수 개발 - CH4, N2O를 중심으로 - (Development of Greenhouse Gas (CH4 and N2O) Emission Factors for Anthracite Fired Power Plants in Korea)

  • 이시형;김진수;이성호;사재환;김기현;전의찬
    • 한국대기환경학회지
    • /
    • 제25권6호
    • /
    • pp.562-570
    • /
    • 2009
  • Although anthracite power plant acts as the important source of greenhouse gas emissions, relatively little is known about its emission potentials. Especially, because the emissions of Non-$CO_2$ greenhouse gas $CH_4$ and $N_2O$ are strongly dependent on fuel type and technology available, it is desirable to obtain the information concerning their emission pattens. In this study, the anthracite power plants in Korea were investigated and the emission gases were analyzed using GC/FID and GC/ECD to develop Non-$CO_2$ emission factors. The anthracite samples were also analyzed to quantity the amount of carbon and hydrogen using an element analyzer, while calorie was measured by an automatic calorie analyzer. The emission factor of $CH_4$ and $N_2O$ computed through the gas analysis corresponded to 0.73 and 1.98 kg/TJ, respectively. Compared with IPCC values, the $CH_4$ emission factor in this study was about 25% lower, while that of $N_2O$ was higher by about 40%. More research is needed to extend our database for emission factors of various energy-consuming facilities in order to stand on a higher position.

Effect of few-walled carbon nanotube crystallinity on electron field emission property

  • Jeong, Hae-Deuk;Lee, Jong-Hyeok;Lee, Byung-Gap;Jeong, Hee-Jin;Lee, Geon-Woong;Bang, Dae-Suk;Cho, Dong-Hwan;Park, Young-Bin;Jhee, Kwang-Hwan
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.207-217
    • /
    • 2011
  • We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.

Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film

  • Song, Young Il;Lee, Jung Woo;Kim, Tae Yoo;Jung, Hwan Jung;Jung, Yong Chae;Suh, Su Jeung;Yang, Cheol-Min
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.255-258
    • /
    • 2013
  • Flexible transparent conducting films (TCFs) were fabricated by dip-coating single-wall carbon nanotubes (SWCNTs) onto a flexible polyethylene terephthalate (PET) film. The amount of coated SWCNTs was controlled simply by dipping number. Because the performance of SWCNT-based TCFs is influenced by both electrical conductance and optical transmittance, we evaluated the film performance by introducing a film property factor using both the number of interconnected SWCNT bundles at intersection points, and the coverage of SWCNTs on the PET substrate, in field emission scanning electron microscopic images. The microscopic film property factor was in an excellent agreement with the macroscopic one determined from electrical conductance and optical transmittance measurements, especially for a small number of dippings. Therefore, the most crucial factor governing the performance of the SWCNT-based TCFs is a SWCNT-network structure with a large number of intersection points for a minimum amount of deposited SWCNTs.