• Title/Summary/Keyword: Carbon Emission Factor

Search Result 178, Processing Time 0.033 seconds

Adsorption properties and metal growth aspects on the surface of activated carbon monolith electrochemically deposited with Ag

  • Oh, Won-Chun;Lim, Chang-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2004
  • The electrochemical adsorption of the Ag ions from aqueous solution on pelletized activated carbon monolith was investigated over wide range of operation time. The adsorption capacities of pelletized activated carbon monolith are associated with their internal porosity and are related properties such as surface area, pore size distribution. The chemical industry generates wastewater that contains toxic matters like heavy metals in small concentrations so that their economic recovery is not feasible. But, the method using activated carbon monolith can be used to withdrawal of heavy metals in waste water. After the electrochemical treatment, the quantitative properties in Ag ion solutions are also examined by pH concentration and studied elemental analysis by ICP-Atomic Emission Spectrometer and Energy Disperse X-ray (EDX) spectra. It is consider that the pH is very important factor at the reason of water pollutant with increasing acidity in industrial field. The result of quantitative analysis using Inductively Coupled Plasma-Atomic Emission Spectrometer of metal after electrochemical reaction in Ag ions solution depending on time are shown that the amount of Ag ions deposited was decreased with growth of Ag particles on the carbon surfaces as increasing electrochemically treated time. And, surface morphologies are investigated by scanning electron microscopy (SEM) to explain the changes in adsorption properties.

Uncertainty Assessment of Emission Factors for Pinus densiflora using Monte Carlo Simulation Technique (몬테 카를로 시뮬레이션을 이용한 소나무 탄소배출계수의 불확도 평가)

  • Pyo, Jung Kee;Son, Yeong Mo;Jang, Gwang Min;Lee, Young Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.477-483
    • /
    • 2013
  • The purpose of this study was to calculate uncertainty of emission factor collected data and to evaluate the applicability of Monte Carlo simulation technique. To estimate the distribution of emission factors (Such as Basic wood density, Biomass expansion factor, and Root-to-shoot ratio), four probability density functions (Normal, Lognormal, Gamma, and Weibull) were used. The two sample Kolmogorov-Smirnov test and cumulative density figure were used to compare the optimal probability density function. It was observed that the basic wood density showed the gamma distribution, the biomass expansion factor results the log-normal distribution, and root-shoot ratio showd the normal distribution for Pinus densiflora in the Gangwon region; the basic wood density was the normal distribution, the biomass expansion factor was the gamma distribution, and root-shoot ratio was the gamma distribution for Pinus densiflora in the central region, respectively. The uncertainty assessment of emission factor were upper 62.1%, lower -52.6% for Pinus densiflora in the Gangwon region and upper 43.9%, lower -34.5% for Pinus densiflora in the central region, respectively.

Development of a Basic Wood Density for Carbon Accounting in Bamboo Forests (대나무 탄소계정을 위한 목재기본밀도 개발)

  • Eunji Hae;Jaeyeop Chung;Sunjung Lee;Hyejung Roh;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.188-194
    • /
    • 2023
  • This study aimed to derive the basic wood density, one of several carbon emission factors, for carbon accounting of bamboo forests in Korea. Bamboo is mainly distributed in Jeollanam-do and Gyeongsangnam-do provinces, and 101 sample trees were selected for each of the three species (Phyllostachys nigra var. henonis, P. bambusoides, and P. pubescens). The basic wood density derivation used the KS F 2098 method. The measurements showed that the basic wood density was 0.83 g/cm3 for P. nigra var. henonis, 0.81 g/cm3 for P. bambusoides, and 0.72 g/cm3 for P. pubescens. However, the bamboo distribution area in Korea is not very large, and P. pubescens grows in one area only. Therefore, the basic wood density that can be applied to bamboo was 0.79 g/cm3. Evaluation of the uncertainty of the extracted basic wood density showed a very low value of 1.61%, which confirmed the reliability of the basic wood density derived from this analysis. The basic wood density, biomass expansion factor, and root-to-shoot ratio were used to calculate the carbon storage capacity of one bamboo plant and expanded to calculate the capacity for a hectare of bamboo. Carbon storage and absorption of bamboo were calculated by applying a carbon-emission factor, such as the basic wood density. These study results are expected to contribute to the carbon-neutral policy and forest management direction in Korea.

Analysis of Carbon Emissions and Land Use Change for Low -Carbon Urban Management - Focused on Jinju (저탄소 도시관리를 위한 탄소배출과 토지이용변화 분석 -진주시를 중심으로-)

  • Eo, Jae-Hoon;Kim, Ki-Tae;Jung, Gil-Sub;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.129-134
    • /
    • 2010
  • Low-carbon Green Growth is highlighted as the main political issue from in and outof Korea. Recently Korean government announced the vision for low-carbon green growth. Considering this as a starting point the carbon emission estimation has become an important factor in the city planning. In order to realize the carbon reduction planning, this research was focused on the trend analyzes between the carbon exhaust estimation as well as the land use change for the past 40 years in Jinju. The image processing data of past aerial photography and the land suitability assessment databases were used to collect the useful information's for the land trend analysis for 40 years. As the results, the land use changes by new residential developments have led to increase the carbon emissions and population concentration rapidly. The urban management planning for low carbon and green growth should consider carbon emissions by population growth derived from land use change. Further research need to estimate the accurate carbon exhaust using relationship model with fuel consumption, carbon estimation, and land use.

Fabrication of Field Emission Device Using Carbon Nanotubes Synthesized by Thermal Chemical Vapor Deposition (열 화학 기상 증착법을 이용한 탄소 나노 튜브 전계 방출 소자의 제조)

  • Yu, W.J.;Cho, Y.S.;Choi, G.S.;Kim, D.J.;Kim, H.Y.;Yoon, S.K.
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.333-337
    • /
    • 2003
  • We report a new fabrication process for carbon nanotube field emitters with high performance. The key of the fabrication process is trim-and-leveling the carbon nanotubes grown in trench structures by employing a planarization process, which leads to a uniform distance from the carbon nanotube tip to the electrode. In order to enable this processing, spin-on-glass liquid is applied over the CNTs grown in trench to have them stubborn adhesion among themselves as well as to the substrate. Thus fabricated emitters reveal an extremely stable emission and aging characteristics with a large current density of 40 ㎃/$\textrm{cm}^2$ at 4.5 V/$\mu\textrm{m}$. The field enhancement factor calculated from the F-N plot is $1.83${\times}$10^{5}$ $cm^{-1}$ , which is a very high value and indicates a superior quality of the emitter originating from the nature of open-tip and high stability of the carbon nanotubes obtained new process.

Correlation Analysis on $CO_2$ Emission and Cost of Energy Resources and Life Cycle Assessment (에너지자원의 이산화탄소 배출량과 비용의 상관관계 분석과 전과정평가)

  • Kim, Heetae;Kim, Eun Chul;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • The world is moving towards a post-carbon society and needs clean and renewable energy for sustainable development. There are many methodological approaches which are helping this shift based on analyzed data about energy resources and which focus on limited types of energy including liquid fossil, solid fossil, gaseous fossil, and biomass (e.g. IPCC Guidelines, ISO 14064-1, WRI Protocol, etc.). We should also consider environmental impact (e.g. greenhouse gas emissions, water use, etc.) and the economic cost of the renewable energy to make a better decision. Recently, researchers have addressed the environmental impact of new technologies which include photovoltaics, wind turbines, hydroelectric power, and biofuel. In this work, we analyze the environmental impact with a carbon emission factor to present a correlation between $CO_2$ emission and the cost of energy resources standardized by the energy output. In addition, we reviewed Life Cycle Assessment (LCA) as another methodology. Researchers who are studying energy systems have ignored the impacts of entire energy systems, e.g. the extraction and processing of fossil fuels. In power sector, the assessment should include extraction, processing, and transportation of fuels, building of power plants, production of electricity, and waste disposal. Therefore LCA could be more suitable tool for energy cost and environmental impact estimation.

  • PDF

Nitrous Oxide Emission from Livestock Compost applied Arable Land in Gangwon-do

  • Seo, Young-Ho;Kim, Se-Won;Choi, Seung-Chul;Jeong, Byeong-Chan;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • Agriculture activities account for 58% of total anthropogenic emissions of nitrous oxide ($N_2O$) with global warming potential of 298 times as compared to carbon dioxide ($CO_2$) on molecule to molecule basis. Quantifying $N_2O$ from managed soil is essential to develop national inventories of greenhouse gas (GHG) emissions. The objective of the study was to compare $N_2O$ emission from livestock compost applied arable land with that for fertilizer treatment. The study was conducted for two years by cultivating Chinese cabbage (Brassica campestris L.) in Chuncheon, Gangwon-do. Accumulated $N_2O$ emission during cultivation of Chinese cabbage after applying livestock compost was slightly greater than that for chemical fertilizer. Slightly greater $N_2O$ emission factor for livestock compost was observed than that for chemical fertilizer possibly due to lump application of livestock compost before crop cultivation compared with split application of chemical fertilizers and enhanced denitrification activity through increased carbon availability by organic matter in livestock compost.

A Study on the Estimation of Air Pollutants Emission Factors in Electric Power Plants (화력발전소의 대기오염물질 배출계수 산정 연구)

  • 김대곤;엄윤성;홍지형;이석조;석광설;이대균;이은정;방선애
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.281-290
    • /
    • 2004
  • The main purpose of this study was to characterize the air pollutants emission factors in electric power plant (EPP) using fossil fuels. The electric power plant is a major air pollution source, thus knowing the emission characteristics of electric power plant is very important to develop a control strategy. The major air pollutants of concern from EPP slacks are particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), carbon monoxide (CO) and heavy metals. Throughout the study, the following results are estimated - PM : 8.671E-05 ∼ 8.724E+01 PM emission (kg) per fuel burned (ton) - SOx : 4.149E-04∼7.877E+01 SOx emission (kg) per fuel burned (ton) - NOx 1.578E-02∼9.857E+00 NOx emission (kg) per fuel burned (ton) - CO : 3.800E-04∼1.291E+00 CO emission (kg) per fuel burned (ton) - Hg : 1.220E+01∼3.108E+02 Hg emission (mg) per fuel burned(ton) From the statistical analysis by Wilcoxon signed ranks test between the emission factors of ours and U.S. EPA's, we can yielded that : p 〉0.05.

MILD Combustion Technology for Recycled Fuel (재생연료의 MILD연소기술)

  • Shim, Sung Hoon;Jeong, Sang Hyun;Lee, Sang Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.205.2-205.2
    • /
    • 2010
  • Optimum operation conditions of low-NOx MILD combustion for gaseous and solid fuels have been investigated by experimental and computer simulation. Loop reactor type MILD combustor without air pre-heater has been used in the present work. The results show that the balance of injection velocities of fuel and surrounding air is major factor for maintaining MILD combustion mode. Temperature difference between lower and upper part can be reduced less than 20 degree of Celsius. It was found that NOx emission in MILD combustion also can be remarkably reduced to more than 85% in comparison with conventional premixed combustion, and reduced to more than 50% in case of nitrogen and carbon dioxide carrying dried waste water sludge and pulverized coal in comparison with the same of air carrying. It was also found that carbon monoxide emission increase was not appeared at the time of changeover to MILD combustion mode from premixed or air carrying combustion at optimum operation condition.

  • PDF